. t.

THE REACTION OF 4-METHOXYQUINOLINE 1-OXIDE WITH DIMETHYL ACETYLENEDICARBOXYLATE

Yasuhisa Ishiguro, Kazuhisa Funakoshi, Šeitaro Saeki, and Masatomo Hamana^{*} Faculty of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812, Japan Ikuhiko Ueda College of General Education, Kyushu University, Ropponmatsu, Chuo-ku, Fukuoka 810, Japan

<u>Abstract</u> — 4-Methoxyquinoline 1-oxide reacts with dimethyl acetylenedicarboxylate in boiling dioxane affords N-quinolinium ethylide (1), 2-substituted quinoline (2), furo[3,2-g]quinoline (3) and 9-oxo-tetrahydro-<u>cis</u>-furo[3,2-<u>b</u>]quinoline (4). Similar reactions readily proceed at low temperatures in dichloromethane, acetonitrile and DMF to give 2, 3 and 4.

We have recently studied the 1,3-dipolar cycloaddition of some 3-monosubstituted and 3,4-disubstituted quinoline 1-oxides, and have obtained many interesting results¹. This paper mainly deals with our observations on the reaction of 4methoxyquinoline 1-oxide with dimethyl acetylenedicarboxylate, which was carried out in connection with the above studies.

Treatment of 4-methoxyquinoline 1-oxide with dimethyl acetylenedicarboxylate (1 equiv.) in boiling dioxane for 1 hr gave α -[N-(4-methoxyquinolinium]- α , β -bismethoxycarbonyl- β -oxo-ethylide (1) (8.8%), methyl α -methoxycarbonyl- α -[2-(4methoxyquinolyl)]pyruvate (2) (31.5%), 2,3-bismethoxycarbonylfuro[3,2-<u>c</u>]quinoline (3) (12.2%) and 3a,4,9,9a-tetrahydro-2,3-bismethoxycarbonyl-9-oxo-<u>cis</u>-furo[3,2-<u>b</u>]quinoline (trace). While the reaction at room temperatures in dioxane was very slow, similar reactions readily proceeded even at lower temperatures when dichloromethane, acetonitril or DMF was used as a solvent instead of dioxane, and products 2, 3 and 4 were obtained, but no formation of N-ylide 1 was noticed in these cases. Table I summarizes these results.

-179-

Table I. The Reaction of 4-Methoxyquinoline 1-Oxide with Dimethyl Acetylenedicarboxylate

Solvent	Reaction		Product, Yield(%)			
	temp.(°C)	time(hr)	$\stackrel{1}{\sim}$	2 ~	3~	4~
dioxane	101	1	8.8	31.5	12,2	trace
сн ₂ с1 ₂	-10	1	-	1.7	9.8	4.6
сн ₂ с1 ₂	0	1	-	22.1	9.2	8.1
MeCN	0	0.5	-	18.8	-	4.6
DMF	0	1	_	34.0	19.5	5.9

Structure assignments of the products are based on the satisfactory elemental analyses, and the IR and PMR spectra shown in Table II. Further, the structure of the 2,3-dihydroquinoline $\frac{4}{2}$ was unambiguously established by an X-ray diffraction study².

Canonne <u>et al</u>.³ have recently reported that the reaction of 4-chloroquinoline 1oxide (5) with diethyl acetylenedicarboxylate in boiling toluene gave the 2-substituted product (6) (mp 91-92°; 3.1%) and the furo[3,2-<u>c</u>]quinoline (7) (3.7%). While the PMR spectra of furoquinolines, 3 and 7, were closely similar to each other, the spectral pattern of 2 was found to be considerably different from that of 6 reported as the 2-substituted product by them.

In order to explore the structure of 2, 2, was oxidized by heating with 30% hydrogen peroxide and acetic acid to give 4-methoxyquinaldic acid 1-oxide (8), from which methyl 4-methyoxyquinaldate (9) was obtained upon successive treatment with

Products	IR (cm ^{~l})	PMR (CDC1 ₃) δ (ppm)	
]. Yellow needles mp 209-211°	νC=O : 1680, 1725	3.60 (3H, s, COOCH ₃), 3.94 (3H, s, COOCH ₃), 4.28 (3H, s, 4-OCH ₃), 7.16 (1H, d, $J_{2,3}$ =7 Hz, C_3 -H), 7.68-8.44 (4H, m, Ar-H), 8.64 (1H, d, $J_{2,3}$ =7 Hz, C_2 -H)	
2 Colorless scales mp 163-165°	vC=0 : 1690, 1725	3.76 (3H, s, COOCH ₃), 3.88 (3H, s, COOCH ₃), 4.12 (3H, s, 4-OCH ₃), 7.32-7.80 (3H, m, Ar-H), 8.05 (1H, dd, J _{7,8} =8 Hz, J _{6,8} =2 Hz, C ₈ -H), 8.10 (1H, s, C ₃ -H), 15.40-16.00 (1H, br s, NH)	
3 Colorless needles mp 148-149°	vC=O : 1725	4.06 (3H, s, COOCH ₃), 4.07 (3H, s, COOCH ₃), 7.58-8.44 (4H, m, Ar-H), 9.40 (1H, s, C ₂ -H)	
4. Yellow prisms mp 142-145°	vNH : 3320 vC=0 : 1645, 1710, 1740	3.80 (3H, s, COOCH ₃), 3.87 (3H, s, COOCH ₃), 5.17 (1H, d, $J_{2,3}=10 \text{ Hz}$, C_2 -H), 5.35 (1H, d, $J_{2,3}=10 \text{ Hz}$, C_3 -H), 6.68 (2H, m, Ar-H), 7.36 (1H, m, Ar-H), 7.78 (1H, dd, $J_{5,6}=8 \text{ Hz}$, $J_{5,7}=2 \text{ Hz}$, C_5 -H)	
6 <u>′</u> Yellow needles mp 135-136°	vC=O : 1690, 1725	1.36 (6H, m, two CH ₃), 4.30 (4H, m, two CH ₂), 7.44-7.88 (3H, m, Ar-H), 8.09 (1H, dd, J _{7,8} =8 Hz, J _{6,8} =2 Hz, C ₈ -H), 16.20-17.00 (1H, br s, NH)	

Table II. The Some Physical Properties of the Products

phosphorus trichloride and methanol⁴. Compound 2, colorless needles, mp 146-147°, was proved identical with an authentic sample prepared in the same way from ethyl 4-methoxy-2-quinolinecyanoacetate⁵. Thus, product 2, was established as the 2-substituted quinoline.

This result prompted us to re-examine the reaction described by Canonne <u>et al</u>.³ Treatment of 5 with diethyl acetylenedicarboxylate (1 equiv.) for 1 hr in boiling toluene gave not the reported 6 but instead another product (6')(4.6%) together with χ (9.6%). Product 6', yellow needles, mp 135-136°, has the empirical formula $C_{17}H_{16}ClNO_5$, and the IR and PMR spectra are consistent with the 2-substituted quinoline structure. Heating 6' with 30% hydrogen peroxide and acetic acid afforded 4-chloroquinaldic acid 1-oxide (10), yellow needles, mp 164-165°. Compound 10 was identical with a sample prepared by a similar oxidation of ethyl 4-chloro-2-quinolinecyanoacetate easily obtainable from 5 and ethyl cyanoacetate by means of acetic anhydride. Accordingly, the structure proposed by Canonne <u>et al</u>.³ for 6 should be assigned to product 6 isolated by us. Comparison of the PMR spectra of 2 and 6 (Table II) further supports this conclusion; it seems likely that product 6 obtained by Canonne <u>et al</u>. is a different type of compound. These reactions are formulated in Chart 1.

The primary 1,3-cycloadduct (A) initially formed from 4-methoxyquinoline 1-oxide and dimethyl acetylenedicarboxylate is not stable enough to be isolated, and readily undergoes the N-O bond fission. The formation of the N-ylide 1, the 2substituted quinoline 2 and the furo $[3,2-\underline{c}]$ quinoline 3 can be explained by courses a, <u>b</u> and <u>c</u>, respectively, as formulated in Chart 2⁶. However it is difficult at present to rationalize the formation of 9-oxo-tetrahydro-furo $[3,2-\underline{b}]$ quinoline 4. Course <u>a</u> involves the rearrangement of A to the aziridine intermediate (B), which isomerizes to 1. The concerted loss of the α -proton with the N-O bond fission in A gives 2 (course b). The formation of 3 follows course <u>c</u> which involves the successive formation of the 2,3-dihydroquinoline (C) and the 3,4-dihydroquinoline (D), and elimination of methanol from D.

Although the de-methylation of the 4-methoxy group of the quinoline ring is inevitable, the formation of \pounds is very much noticeable because \pounds is the first example of 2,3-dihydroquinolines obtained from the 1,3-dipolar cycloaddition of quinoline 1-oxides. The reaction seems likely to proceed through the 2,3-dihydroquinoline intermediate (E) different from D, however the details of the mechanism is not clear at all, particularly with respect to the de-methylation process. Furthermore, the intermediacy of E postulated above suggests the possibility that the formation of the 2-substituted quinoline 2 follows an alternate path involving E as a precursor, instead of course $\underline{b}^{6,7}$.

Chart 2

Further studies are in progress in order to clarify the essential features of the formation of 4_{2} by using various 4-substituted quinoline 1-oxides and dipolarophiles.

ACKNOWLEDGEMENT

We are grateful to a Grant-in Aid for Chemical Research in Development and Utilization of Nitrogen-Organic Resources from the Ministry of Education, Science and Culture, Japan, for patial financial support of this work.

REFERENCES

- M. Yoshida <u>et al.</u>, <u>Abstruct Paper of the 11th Congress of Heterocyclic Chem-istry</u>, Kanazawa, 1978, 168-172; Idem, <u>Heterocycles</u>, 1979, <u>12</u>, 167; M. Hamana, H. Noda, and M. Aoyama, <u>Heterocycles</u>, 1974, <u>2</u>, 167; H. Noda, T. Yamamori, M. Yoshida, and M. Hamana, <u>Heterocycles</u>, 1976, <u>4</u>, 453.
- I. Ueda, Y. Ishiguro, K. Funakoshi, S. Saeki, and M. Hamana, <u>Acta Crystallo-</u> graphica, 1980 in press.
- 3. P. Canonne, G. Lemay, and R. A. Abramovitch, <u>Heterocycles</u>, 1978, <u>9</u>, 1217.
- 4. Since spectral examinations of compound 8 were rather difficult because of its sparing solubility in organic solvents, it was transformed into 9 as a reference compound.
- K. Funakoshi, H. Sonoda, Y. Sonoda, and M. Hamana, <u>Chem. Pharm. Bull.</u>, 1978, 26, 3504.
- R. A. Abramovitch and I. Shinkai, <u>Accounts Chem. Res.</u>, 1976, 9, 192, and references quoted therein.
- 7. T. Hisano, T. Matsuoka, M. Ichikawa, and M. Hamana, <u>Heterocycles</u>, 1980, <u>14</u>,

Received, 24th November, 1979