LК.

THE REACTION OF 4-METHOXYQUINOLINE 1-OXIDE WITH DIMETHYL ACETYLENEDICARBOXYLATE

Yasuhisa Ishiguro, Kazuhisa Funakoshi, Seitaro Saeki, and Masatomo Hamana^{*} Faculty of Pharmaceutical Sciences, Kyushu University , Maidashi, Higashi-ku, Fukuoka 812, Japan Ikuhiko Ueda College of General Education, Kyushu University, Ropponmatsu, Chuo-ku, Fukuoka 810, Japan

Abstract $-$ 4-Methoxyquinoline 1-oxide reacts with dimethyl acetylenedicarboxylate in boiling dioxane affords N-quinolinium ethylide (I), 2-substituted quinoline (2), furo[3,2-c]quinoline (3) and 9 -oxo-tetrahydro-cis-furo $[3,2-p]$ quinoline (4) . Similar reactions readily proceed at low temperatures in dichloromethane, acetonitrile and DMF to give *2,* **2** and 4.

We have recently studied the 1,3-dipolar cycloaddition of some 3-monosubstituted and 3.4-disubstituted quinoline 1-oxides, and have obtained many interesting **¹**results . This paper mainly deals with our,observations on the reaction **of 4** methoxyquinoline 1-oxide with dimethyl acetylenedicarboxylate, which was carried out in connection with the above studies.

Treatment of 4-methoxyquinoline 1-oxide with dimethyl acetylenedicarboxylate (1 equiv.) in boiling dioxane for 1 hr gave α - [N- (4-methoxyquinolinium]-a, β -bismethoxycarbonyl- β -oxo-ethylide (1) (8.8%), methyl α -methoxycarbonyl- α -[2-(4**rnetho~yquinol~l)]~~ruvate,(2)** (31.5%). **2.3-bismethoxycarbonylfuro[3,2-clquinoline** -2 (3) (12.2%) and $3a,4,9,9a-tetrahydro-2,3-bissmethoxycarbonyl-9-oxo-cis-furo[3,2-b]$ quinoline (trace). While the reaction at room temperatures in dioxane was very slow, similar reactions readily proceeded even at lower temperatures when dichloromethane, acetonitril or DMF was used as a solvent instead of dioxane, and products 2, 3 and 4 were obtained, but no formation of N-ylide 1 was noticed in these cases. Table I summarizes thses results.

 $-179-$

Table I. The Reaction of 4-Methoxyquinoline 1-Oxide with Dimethyl Acetylenedicarboxylate

Structure assignments of the products are based on the satisfactory elemental analyses, and the IR and PMR spectra shown 'in Table **II.** Further, the structure of the 2,3-dihydroquinoline A was unambiguously established by an X-ray diffraction $study²$.

Canonne et al.³ have recently reported that the reaction of 4-chloroquinoline 1oxide *(3)* with diethyl acetylenedicarboxylate in boiling toluene gave the 2-substituted product (6) (mp 91-92°; 3.1%) and the furo[3,2-clquinoline (7) (3.7%). While the PMR spectra of furoquinolines, λ and λ , were closely similar to each other, the spectral pattern of 2 was found to be considerably different from that of *5* reported as the 2-substituted product by them.

In order to explore the structure of 2 , 2 was oxidized by heating with 30% hydrogen peroxide and acetic acid to give 4-methoxyquinaldic acid 1-oxide **(g),** from which methyl 4-methyoxyquinaldate **(2)** was obtained upon successive treatment with

Table II. The Some Physical Properties of the Products

phosphorus trichloride and methanol⁴. Compound 2, colorless needles, mp 146-147°, was proved identical with an authentic sample prepared in the same way from ethyl 4-methoxy-2-quinolinecyanoacetate⁵. Thus, product λ was established as the 2substituted quinoline.

This result prompted us to re-examine the reaction described by Canonne \underline{et} \underline{al} .³ Treatment of Σ with diethyl acetylenedicarboxylate (1 equiv.) for 1 hr in boiling toluene gave not the reported *6* but instead another product (6') (4.6%) together with ζ (9.6%). Product ξ' , yellow needles, mp 135-136°, has the empirical formula C₁₇H₁₆ClNO₅, and the IR and PMR spectra are consistent with the 2-substituted quinoline structure. Heating **k'** with 30% hydrogen peroxide and acetic acid afforded 4-chloroquinaldic acid 1-oxide (10) , yellow needles, mp 164-165°. Compound 10 was identical with a sample prepared by a similar oxidation of ethyl 4-chloro-2-quinolinecyanoacetate easily obtainable from 5 and ethyl cyanoacetate by means of acetic anhydride. Accordingly, the structure proposed by Canonne \underline{e} t \underline{a} .³ for \underline{b} .

should be assigned to product f'_i isolated by us. Comparison of the PMR spectra of 2 and **j,'** (Table II) further supports this conclusion; it seems likely that product **j,** obtained by Canonne et **a.** is a different type of compound. These reactions are formulated in Chart 1.

he primary 1.3-cycloadduct (A) initially formed from 4-methoxyquinoline 1-oxide and dimethyl acetylenedicarboxylate is not stable enough to be isolated, and readily undergoes the N-0 bond fission. The formation of the N-ylide **2,** the **2** substituted quinoline 2 and the furo[3,2-ce]quinoline 3 can be explained by courses **⁶**a, band *2,* respectively, as formulated in Chart 2 . However it is difficult at present to rationalize the formation of **9-0x0-tetrahydro-furo13,Z-glquinoline** A. Course \underline{a} involves the rearrangement of \underline{A} to the aziridine intermediate (\underline{B}), which

isomerizes to 1. The concerted loss of the α -proton with the N-0 bond fission in &gives (course **b).** The formation of **J** follows course cwhich involves the successive formation of the 2,3-dihydroquinoline (C) and the 3,4-dihydroquinoline *(0).* and elimination of methanol from **E.**

Although the de-methylation of the 4-methoxy group of the quinoline ring is inevitable, the formation of $\underline{\mathcal{A}}$ is very much noticeable because $\underline{\mathcal{A}}$ is the first example of 2,3-dihydroquinolines obtained from the 1,3-dipolar cycloaddition of quinoline 1-oxides. The reaction seems likely to proceed through the 2,3-dihydroquinoline intermediate (E) different from D, however the details of the mechanism is not clear at all, particularly with respect to the de-methylation process. Furthermore, the intermediacy of E postulated above suggests the possibility that the formation of the 2-substituted quinoline 2 follows an alternate path involving E as a precursor, instead of course $b^{6,7}$. :

Chart 2

Further studies are in progress in order to clarify the essential features of the formation of $\frac{4}{3}$ by using various 4-substituted quinoline 1-oxides and dipolarophiles.

ACKNOWLEDGEMENT

We are grateful to a Grant-in Aid for Chemical Research in Development and utilization of Nitrogen-Organic Resources from the Ministry of Education. Science and Culture, Japan, for patial financial support of this work.

REFERENCES

- 1. M. Yoshida et al., Abstruct Paper of the 11th Congress of Heterocyclic Chemistry, Kanazawa, 1978, 168-172; Idem, Heterocycles, 1979, 12, 167; M. Hamana, H. Noda, and M. Aoyama. Heterocycles, 1974, **2,** 167; H. Noda, T. Yamamori, M. Yoshida, and M. Hamana, Heterocycles, 1976, *A,* 453.
- 2. I. Ueda, Y. Ishiguro, K. Funakoshi, S. Saeki, and M. Hamana, Acta Crystallographica. 1980 in press.
- 3. P. Canonne, G. Lemay, and R. A. Abramovitch, Heterocycles, 1978, 9, 1217.
- 4. Since spectral examinations of compound 8 were rather difficult because of its sparing solubility in organic solvents, it was transformed into 9 as a reference compound.
- 5. **K.** Funakoshi, H. Sonoda, Y. Sonoda, and M. Hamana, Chem. Pharm. Bull., 1978, 26, 3504. N
- 6. R. A. Abramovitch and I. Shinkai, Accounts Chem. Res., 1976, **2,** 192, and references quoted therein.
- 7. T. Hisano, T. Matsuoka, M. Ichikawa, and M. Hamana, Heterocycles, 1980, 14,

Received, 24th November, 1979