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Abstract- 4-Methoxyquinoline I-oxide reacts with dimethyl acet- 

ylenedicarboxylate in boiling dioxane affords N-quinolinium eth- 

ylide (A), 2-substituted quinoline (L), furo13.2-clquinoline (9 
and 9-0x0- te t rahydro-&-furo[3 ,2-b]quinol ine  (4). Similar re- 
actions readily proceed at low temperatures in fiichloroniathane, 

acetonitrile and DMF to give 2,  2 and 4. 

We have recently studied the 1.3-dipolar cycloaddition of some 3-monosubstituted 

and 3.4-disubstituted quinoline 1-oxides, and have obtained many interesting 

1 results . This paper mainly deals with our,observations on the reaction of 4 -  

methoxyquinoline 1-oxide with dimethyl a~et~lenedicarboxylate, which was carried 

out in connection with the above studies. 

Treatment of 4-methoxyq+noline 1-oxide with dimethyl acetylenedicarboxylate (1 
. > 

equiv. ) in boiling dioxa",~ for 1 hr gave a- [N- (4-methoxyquinoliniuml -a, 6-bis- 
. .. 

methoxycarbonyl-poxo-ethylide ) (8.8%), methyl a-methoxycarbonyl-a-12-(4- 

rnetho~yquinol~l)]~~ruvate,(2) (31.5%). 2.3-bismethoxycarbonylfuro[3,2-clquinoline 
-2 

(2) (12.2%) and 3a,4,9,9a-tetrahydro-2,3-hismethoxycarbonyl-9-ox0-~-f~r03,2-- 
quinoline (trace). While the reaction at room temperatures in dioxane was very 

slow, similar reactions readily proceeded even at lower temperatures when di- 

chloromethane, acetonitril or DMF was used as a solvent instead of dioxane, and 

products 2, 3 and %were Obtained, but no formation of N-ylidekwas noticed in 

these cases. Table I summarizes thses results. 



Table I. The Reaction of 4-Methoxyquinoline 1-Oxide 

with Dimethyl Acetylenedicarboxylate 

+ C-CmMe reflux 
I 
C-COOMe dioxane 

4 
0 COOMe 

COOMe 
C-COOMe 
I1 

O ~ - ~ - ~ ~ ~ ~ e  

1 
N 

2 ,., 3 
CJ 

4 
N 

Reaction Product, Yield ( % )  
Solvent 

tamp. ('C) timelhr) 1 - 2 ,., 3 
N 

4 
N 

dioxane 101 1 8.8 31.5 12.2 trace 

CH2C12 -10 1 - 1.7 9.8 4.6 

CH2C12 0 1 - 22.1 9.2 8.1 

MeCN 0 0.5 - 18.8 - 4.6 

DMF 0 1 - 34.0 19.5 5.9 

Structure assignments of the products are based on the satisfactory elemental 

analyses, and the IR and PMR spectra shown 'in Table II. Further, the structure of 

the 2.3-dihydroquinoline $was unambiguously established by an X-ray diffraction 

2 study . 
Canonne 9 61.3 have recently reported that the reaction of 4-chloroquinoline 1- 

oxide (3) with diethyl acetylenedicarboxylate in boiling toluene gave the 2-sub- 
stituted product (5) Imp 91-92'; 3.1%) and the furoL3.2-clquinoline I (3.7%). 

While the PMR spectra of furoquinolines, Land z, were closely similar to each 
other, the spectral pattern of $was found to be considerably different from that 

of 5 reported as the 2-substituted product by them. 
In order to explore the structure of 2, &was oxidized by heating with 30% hydro- 
gen peroxide and acetic acid to give 4-methoxyquinaldic acid 1-oxide (g), from 
which methyl 4-methyoxyquinaldate (2) was obtained upon successive treatment with 
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Table II. The Some Physical Properties of the Products 

Products 

1 
# 

Yellow needles 

mp 209-211' 

2 ,., 
Colorless scales 

mp 163-165" 

3 e 
Color less needles 

mp 148-149' 

4 w 

Yellow prisms 

mo 142-145' 

6' 
Cd 

Ye1 low needles 

mp 135-136' 

PMR (CDC13) 6 (ppm) 

3.60 (3H, s, COOCH~),  3.94 (3H, 8, COOCH3), 4.28 (3H, 8, 

4-0CH3), 7.16 (lH, d, JZv3=7 HZ. C3-H), 7.68-8.44 (4H, 

m, Ar-H), 8.64 ( lH, d, J2,3=7 HZ, C2-H) 

3.76 (3H, s, COOCH3), 3.88 (3H, s, COOCH3), 4.12 (3H, s, 

4-0CH3), 7.32-7.80 (3H, m, Ar-H), 8.05 ( lH, dd, J7,8=8 HZ. 

J6,8=2 Hz, C8-H), 8.10 ( l H ,  s, C3-H), 15.40-16.00 (lH, 

b r  s, NH) 

3.80 (3H, s, COOCH3), 3.87 (3H, s, COOCH3), 5.17 (lH, d, 

J2,3=10 Hz, C2-H), 5.35 (lH, d, J2,3=10 Hz, C3-H), 6.68 

(2H, m, Ar-H), 7.36 (lH, m, Ar-H), 7.78 (lH, dd, J5,6= 

8 Hz , J5 ,  7=2 Hz, C5-H) 

1.36 (6H, m, two CH3), 4.30 (4H, m, two CH2), 7.44-7.88 

(3H, m, Ar-H), 8.09 (lH, dd, J 7,8 =8 Hz, J6,8=2 Hz, C8-H), 

16.20-17.00 (lH, b r  s, NH) 

4 phosphorus trichloride and methanol . Compound 2, colorless needles, mp 146-147', 
was proved identical with an authentic sample prepared in the same way from ethyl 

5 4-methoxy-2-quinolinecyanoacetate . Thus, product &was established as the 2- 

substituted quinoline. 

This result prompted us to re-examine the reaction described by Canonne al. 3 

TreatmentofAwithdiethyl acetylenedicarboxylate (1 equiv.) for 1 hr in boiling 

toluene gave not the reported 5 but instead another product ($1  (4.6%) together 

with (9.6%). Product s', yellow needles, mp 135-136°, has the empirical formula 
CI7Hl6C1NO5, and the IR and PMR spectra are consistent with the 2-substituted 

quinoline structure. Heating k' with 30% hydrogen peroxide and acetic acid af- 
forded 4-chloroquinaldic acid 1-oxide ($1, yellow needles, mp 164-165'. Compound 

1s was identical with a sample prepared by a similar oxidation of ethyl 4-chloro- 

2-quinolinecyanoacetate easily obtainable from 5 and ethyl cyanoacetate by means 
e 

of acetic anhydride. Accordingly. the structure proposed by Canonne & &.3 for 6 



should be assigned to producth' isolated by us. Comparison of the PMR spectra of 

2 and j,' (Table II) further supports this conclusion; it seems likely that product 

j, obtained by Canonne et a. is a different type of compound. 
These reactions are formulated in Chart 1. 

COOEt 

+ ;-C0o.t reflux &cooEt 

C-COOEt toluene \ ,COOEt + 
I H c\ 
0 COCOOEt 

'? 

d H202-ACOH 

,COOEt heat 
I 

COOH 
H \COCOOE~ 

0 

NC.CH2COOEt 
5 

IV . , Ac20 . . ,  
H COOEt 

Chart I 

", 
The primary 1.3-cycioadduct initially formed from 4-methoxyquinoline 1-oxide 

and dimethyl acetylenedicarboxylate isnot stable enough to be isolated, and 

readily undergoes the N-0 bond fission. The formation of the N-ylide 2, the 2 -  

substituted quinoline 2 and the furo[3,2-clquinoline j c a n  he explained by courses 
6 a, band 2, respectively, as formulated in Chart 2 . However it is difficult at 

present to rationalize the formation of 9-0x0-tetrahydro-furo13,Z-glquinoline A. 
Course a involves the rearrangement of ,&to the aziridine intermediate la, which 
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isomerizes to 1. The concerted loss of the a-proton with the N-0 bond fission in 
&gives (course b). The formation of J follows course cwhich involves the 

successive formation of the 2.3-dihydroquinoline (5) and the 3.4-dihydroquinoline 
( 0 ) .  and elimination of methanol from E. 
Although the de-methylation of the 4-methoxy group of the quinoline ring is 

inevitable, the formation of 4 is very much noticeable because 4- is the first 

example of 2,3-dihydroquinolines obtained from the 1,3-dipolar cycloaddition of 

quinoline 1-oxides. The reaction seems likely to proceed through the 2,3-dihydro- 

quinoline intermediate ( different from E, however the details of the mechanism 
is not clear at all, particularly with respect to the de-methylation process. 

Furthermore, the intermediacy o f 3  postulated above sugoests the possibility that 

the formation of the 2-substituted quinoline 2 Eollows an alternate path involving 
E as a precursor, instead of course b6". : .., 

&H course h - 2 

//C*OoMe 

,./ 

I 
course/ A ,:: c\ I I 

MeO H 0 
>c-COOM~ 

~ c \ C O O M e  & COOMe COOME) 
-COOMe 
I H C 

H 
fS O=C<OOMe 

1 5 

1 COOMe 

Chart 2 



Further studies are in progress in order to clarify the essential features of the 

formation of $by using various 4-substituted quinoline 1-oxides and dipolaro- 

philes. 
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