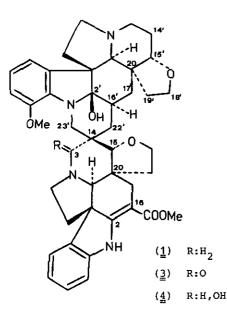
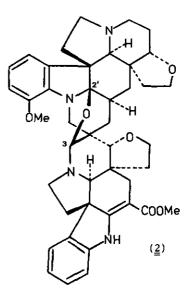
3ξ -hydroxyvobtusine, a key-link between vobtusine and amataine


Bruno Danieli^{*}, Giordano Lesma, Giovanni Palmisano Istituto di Chimica Organica della Facoltà di Scienze, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy - Centro CNR di Studio per le Sostanze Organiche Naturali


and Bruno Gabetta

Research Laboratories, Inverni della Beffa, Milano, Italy

<u>Abstract</u> - The title compound, a 'bisindoline' alkaloid from the root bark of <u>Voacanga chalotiana</u> (Apocynaceae) has structure ($\underline{4}$) proved by correlation with vobtusine ($\underline{1}$) and amataine ($\underline{2}$).

A characteristic of the genera <u>Callichilia</u> (<u>Hedranthera</u>), <u>Conopharyngia</u>, <u>Rejoua</u> and <u>Voacanga</u> of the Apocynaceae family is the occurrence of 'dimer' alkaloids of the vobtusine type, the prototype of this being vobtusine (<u>1</u>) itself. The intriguing structure of vobtusine was proposed on the basis of chemical and spectroscopic studies^{1a,b} and fully elucidated by X-ray analysis of its dibromo derivative.² Much of these alkaloids belong to the vobtusine series (<u>i.e.</u>, with 14<u>5</u>-configuration) vobtusine, demethyl-

vobtusine³, 18'-oxovobtusine⁴, 2'-deoxy-18'-oxovobtusine⁴, 3-oxovobtusine $(\underline{3})^5$, 3-oxovobtusine N-oxide⁵, 2'-deoxy-3-oxovobtusine⁵, whereas only few naturally occurring related alkaloids belong to the stereoisomeric series $(14\underline{R})[\underline{i}.\underline{e}., \text{ amataine } (\underline{2}, \text{ subsessiline, grandifoline})^6$, folicangine^{1b,7}, 18'-oxosubsessiline⁵, owerreine³ and isovoafolidine^{1b,7}.

The large scale extraction of the root bark of Voacanga chalotiana Pierre ex Stapf gave in addition to vobtusine, amataine and other reported alkaloids⁸, a new 'bisindoline' alkaloid⁹ to which structure of 3ξ -hydroxyvobtusine (4) was assigned on chemical and spectroscopic grounds. The new alkaloid is a colourless amorphous solid, insoluble in all the apolar solvents, sparingly soluble in aprotic and protic polar solvents and exhibits UV spectrum $[\lambda_{max}(MeOH) 221,263,299 and 325 nm]$ and IR spec_ trum $\left[V_{max}(nujol) 3450-3300,1680,1610 \text{ cm}^{-1}\right]$ compatible with the same functionality and chromophores as in vobtusine and amataine. The ¹H-NMR spectrum shows a singlet at δ (CDCl₂) 8.95(1H, NH), two multiplets at δ 7.05-7.25 and 6.60-6.95(total seven aromatic protons), two doublets at δ 5.09 [1H, ²J 14Hz, C(23')-H] and 4.53 [1H, ³J 10] Hz, C(3)-H; singlet after D₂O exchange] and two methyl singlets at δ 3.80 and 3.73. The chemical shift of C(23')-H as well as the Cotton effect amplitudes in CD spectrum $[\lambda_{max}^{+}]$ (MeOH) 238 nm ($\Delta \varepsilon$ +8.6), 264(-9.2), 288(+6.0) and 323(-25.2)] for (4) are indicative of (14S) configuration¹⁰. The presence of the carbinolamine group N-C(3)-OH and the configuration at C(14) are confirmed by quantitative NaBH, reduction to vobtusine and by dehydratio to amataine¹¹, the last transformation being accompained by configurational inversion at the spiro center C(14).

The EI-MS spectrum (70 eV) does not exhibit a peak at 734 due to M^{*+} and it is not reproducible owing to the thermal-induced dehydration to amataine. However at 200, a-long with ions at m/e 716(13%), 658(10), 502(4), 391(5), 363(24), 331(21), 168(12) and 138(100) characteristic of amataine⁶, it displays peaks at m/e 717(8), 698(5) and 640 (5) corresponding to $(M-OH)^+$, $(M-2H_2O)^{*+}$ and $(M-2H_2O-C_2H_2O_2)^{*+}$ indicative of the presence of two hydroxy groups in the molecule.

All these evidences support the proposed structure of 3ξ -hydroxyvobtusine for ($\underline{4}$) and this was found identical to 'hydratoamataine' obtained on acidic treatment (dioxane, 0.01N HCl, 2 hr at 80°) of amataine⁶. A convincing mechanism for the transformation 3ξ -hydroxyvobtusine = amataine has been precedently formulated by Hesse⁶, the inversion of configuration at the spiro center C(14) being strictly required by C(2')-C(3) ether bridge formation. ($\underline{4}$) represent the obvious precursor of 3-oxovobtusine ($\underline{3}$) and its intermediacy in the formation of amataine is suggested on the basis of the reported chemical behaviour. Although 3 $\underline{\xi}$ -hydroxyvobtusine and 3-oxovobtusine have been formed (t.l.c.) in the iodine-promoted oxidation¹² of vobtusine, we have not evidenced traces of these compounds when vobtusine was stored under oxygen even in the presence of adsorbents such as silica or alumina.

REFERENCES AND NOTES

- a) J.Poisson, M.Plat, H.Budzikiewicz, L.J.Durham, and C.Djerassi, <u>Tetrahedron</u>, 1966,<u>22</u>,1075; A.A.Gorman, V.Agwada, M.Hesse, U.Renner, and H.Schmid, <u>Helv</u>. <u>Chim</u>. Acta, 1966,<u>49</u>,2072; b) Y.Rolland, N.Kunesch, J.Poisson, E.W.Hagaman, F.M.Schell, and E.Wenkert, J. Org. <u>Chem</u>.,1976,<u>41</u>,3270.
- 2 O.Lefebvre-Soubeyran, Acta Crystall., 1973, Sect.B 29,2855.
- 3 J.Naranjo, M.Hesse, and H.Schmid, Helv. Chim. Acta, 1972, 55, 1849.
- 4 N.Kunesch, J.Poisson, and B.C.Das, Tetr. Letters, 1968,1745.
- 5 Y.Rolland, N.Kunesch, F.Libot, J.Poisson, and H.Budzikiewicz, <u>Bull. Soc. Chim.</u> <u>France</u>, 1975,2503.
- V.C.Agwada, J.Naranjo, M.Hesse, H.Schmid, Y.Rolland, N.Kunesch, J.Poisson, and
 A.Chatterjee, <u>Helv. Chim. Acta</u>, 1977, <u>60</u>, 2830 and references cited therein.
- 7 N.Kunesch, B.C.Das, and J.Poisson, Bull. Soc. Chim. France, 1970,4370.
- 8 B.Gabetta, E.M.Martinelli, and G.Mustich, <u>Fitoterapia</u>, 1974,<u>45</u>,32 (<u>C.A.</u>,1974,<u>81</u> 166291).
- 9 35-hydroxyvobtusine gives a blue spot with Ce(IV) sulfate on silica gel plate with R_f 0.18 (hexane-CH₂Cl₂-AcOEt-MeOH, 25:5:20:10) in comparison with amataine (R_f 0.54) and vobtusine (R_f 0.27). It was isolated in 0.001% yield by silica gel chromatography (hexane-AcOEt-MeOH, 48:48:4) followed by rechromatography (CHCl₃-MeOH, 95:5).
- 10 N.Kunesch, Y.Rolland, J.Poisson, P.L.Majumder, R.Majumder, A.Chatterjee, V.C.Agwada, J.Naranjo, M.Hesse, and H.Schmid, Helv. Chim. Acta, 1975, <u>60</u>, 2854.
- 11 A solution of (4) in anhydrous DMSO is completely converted into amataine by heating at 80° for 1 hr or on long standing (c.a. 1 month) at r.t..
- 12 For a related oxidation of voacangine into 19-hydroxyvoacangine and 19-oxovoacangine, see V.C.Agwada, Y.Morita, U.Renner, M.Hesse, and H.Schmid, <u>Helv. Chim. Acta</u>, 1975, <u>58</u>, 1001.

Received, 15th November, 1979