NEW PRENYLFLAVANONES FROM HERNANDIA NYMPHAEFOLIA (PRESL) KUBITZKI

Kenichi Yakushijin, Kenichi Shibayama, Hiroyuki Murata¹ and Hiroshi Furukawa* Faculty of Pharmacy, Meijo University, Yagoto, Tempaku, Nagoya 468, Japan

Abstract — Three new prenylflavanones, nymphaeol-A, -B and -C were isolated from *Hernandia nymphaefolia* (presl) Kubitzki, and the structures were assigned as I, II and III, respectively.

We have recently reported new alkaloidal components, hernagine (1,2,11-trimethoxy-10-hydroxy-N-noraporphine) and 3-cyano-4-methoxypyridine, isolated from the leaves of *Hernandia nymphaefolia* (Pres1) Kubitzki (Japanese name "*Hasunoha-giri* ") collected on Ishigaki island². In our further study on the constituents of this plant, we here report on the isolation and structures of three new prenylflavanones named as nymphaeol-A, -B and -C, respectively. The non-basic fraction of methanol extract of the leaves was fractionated by column chromatography on silica gel. The phenolic fraction eluted with CHCl₃-

MeOH (30:1) was submitted to preparative TLC on silica gel using $CHCl_{x}$ -ether (1:1)

to give nymphaeol-A (I, 0.6% in extract) and -B (II, 0.4% in extract). Nymphaeol-A (I), $C_{25}H_{28}O_6$, was obtained as colorless needles, mp 168-170°, $[\alpha]_D$ -26.2° (c=0.21, CHCl₃), which gave purple color with MeOH-FeCl₃ and positive with Mg-HCl test. The IR (KBr) spectrum showed the presence of hydroxyl group (3300 cm⁻¹) and conjugated carbonyl group (1623 cm⁻¹). The UV spectra $[\lambda_{max}^{EtOH} nm (log <math>\varepsilon)$: 207 (4.69), 230 (sh, 4.43), 294 (4.29), 340 (sh, 3.63)] showed the bathochromic shift in basic medium $[\lambda_{max}^{EtOH-MeONa} nm (log <math>\varepsilon)$: 249 (4.32), 334 (4.47)]. The salient feature of ¹H-NMR (acetone-d₆) spectrum is the ABX system, diagnostic for C_2 and C_3 protons of a flavanone nucleus³. The C_2 proton, the X part, appears as a double doublet at δ 5.33 (J_{AX}=12.4, J_{BX}=3.4 Hz) while the C₃ protons, the AB part, appears as δ 2.70 and 3.13 (J_{AB}=17.6, J_{AX}=12.4 Hz, J_{BX}=3.4 Hz). The MS spectrum showed the fragments at *m/e* 301 (M-123), 219 (base peak), 165, 136 and

69⁴⁻⁶. The significant peak at m/e 301 (VII) indicates the loss of 123 mass units from the molecular ion, suggesting the presence of a geranyl (or neryl) group. The characteristic peaks at m/e 219 and 165 suggest the presence of two hydroxyl groups and a geranyl (or neryl) group on the ring A. The presence of geranyl (or neryl) group 4,5,7 was supported by the appearance in the 1 H-NMR spectrum of three methyl singlets at δ 1.59, 1.65, 1.80 (each 3H, C₃,, 8,,-CH₃), a broad singlet at δ 2.02 (4H, C₅,,,-H), a broad doublet at δ 3.28 (2H, C₁,,-H) and a multiplet at δ 5.17 (2H, C₂,,,,,-H). The possibility of geranyl group is supported by the appearance in the 13C-NMR spectrum of C₄,, at δ 16.1 and C₅,, at δ 40.3, respectively⁸. The ¹H-NMR spectrum in pyridine-d₅ showed the *ortho-* and *meta*coupled double doublet at δ 7.11 (1H, J=2 and 8 Hz, C₆,-H), ortho-coupled doublet at 6 7.31 (1H, J=8 Hz, C_{c} ,-H) and meta-coupled doublet at 6 7.55 (1H, J=2 Hz, C_{2} ,-H), which indicated that the geranyl group on the ring A attached at C_6 or C_8 . Acetylation of I with acetic anhydride in pyridine gave the triacetate (IV) and tetraacetate (V) as colorless syrups, respectively. The 1 H-NMR (CDCl₃) spectrum of IV shows that a signal of $C^{}_1,,$ methylene broad doublet at δ 3.23 is shifted downfield compared with that in V (δ 3.15) and the geranyl group is thus located at C_6^{9} . These evidences led to the assignment of the structure (I) of nymphaeol-A devoided of the stereochemistry.

Nymphaeol-B (II), C25H2806, was obtained as colorless amorphous solid, mp 48-52°; IR v_{max}^{KBr} cm⁻¹: 3300 (OH), 1623 (C=O); UV λ_{max}^{EtOH} nm (log ε): 215 (4.51), 230 (4.32), 290 (4.22); $\lambda_{max}^{EtOH-MeONa}$ nm (log ε): 217 (4.55), 250 (4.06), 328 (4.44); MS m/e: 300, 153 (base peak), 123, 69; ¹H-NMR (acetone- d_6) δ : 2.65 (1H, dd, J=3.2 and 17.2 Hz, C_{3eq}-H), 3.17 (1H, dd, J=12.6 and 17.2 Hz, C_{3ax}-H), 5.61 (1H, dd, J=3.2 and 12.6 Hz, C₂-H), 5.97 (2H, s, C_{6.8}-H), 6.81 (1H, d, J=S Hz, C₆,-H), 6.98 (1H, d, J=8 Hz, C₅,-H), geranyl: 1.56, 1.62, 1.70 (each 3H, C_3 , $_{,8}$, $-CH_3$), 2.00 (4H, C_5 , $_{,6}$, -H), 3.54 (2H, C_1 , -H), 5.10 (2H, C_2 , -7, -H). In the ¹H-NMR spectrum in pyridine-d₅, the presence of meta-coupled doublets (J=2 Hz) at & 6.43 and 6.47 indicated that the A ring was unsubstituted at C_6 and C_8 . Furthermore, the substitution pattern of two hydroxyls and a geranyl group on B ring was assigned as follows: The ortho-coupled doublets (J=8 Hz) at δ 6.81 and 6.98 in ¹H-NMR spectrum of II, showed the presence of 1,2,3,4-substituted ring B. And in the MS spectrum, the fragment peak at m/e300, the loss of 124 mass units from the molecular ion, for a fragment VIII suggested the location of a geranyl moiety. Furthermore, this substitution pattern on B ring was also supported by the chemical shifts of carbons on ring B in 13 C-NMR spect-

HETEROCYCLES, Vol 14, No 4, 1980

From these data, the structure of nymphaeol-B was assigned as II. rum of II. The phenolic fraction eluted with $CHCl_{\tau}$ was submitted to preparative TLC on silica gel using CHCl₃-ether (1:1) to give nymphaeol-C (III, 10% in extract): mp 77-81°, $C_{30}H_{36}O_6$, [a]_D -14° (c=0.2, CHCl₃); IR $v_{max}^{CHCl_3}$ cm⁻¹: 3360 (OH), 1630 (C=0); UV λ_{max}^{EtOH} nm (log ε): 209 (4.66), 233 (sh, 4.26), 294 (4.12); λ^{EtOH-MeONa} nm (log ε): 210 max (4.69), 251 (4.05), 334 (4.32); ¹H-NMR (CDCl₃) δ : 2.69 (1H, dd, J=3.2 and 17.2 Hz, C_{3eq}-H), 3.09 (1H, dd, J=12.4 and 17.2 Hz, C_{3ax}-H), 5.44 (1H, dd, J=3.2 and 12.4 Hz, C₂-H), 5.92 (1H, s, C₆-H), 6.74 (1H, d, J=8 Hz, C₆,-H), 6.91 (1H, d, J=8 Hz, C₅,-H); geranyl and y,y-dimethylallyl: 1.56, 1.64, 1.74, 1.80 (15H, C3,, 8,, 3,,, -CH3), 2.02 (4H, C₅,,,6,,-H), 3.36 (4H, C₁,,,,,-H), 5.11 (3H, C₂,,,7,,,2,,,-H). From these data, nymphaeol-C was also belong with the flavanone having four hydroxyls, a geranyl and a y,y-dimethylallyl group. The MS spectrum of III showed the fragments at m/e368, 221, 165 (base peak), 123, 69. The significant peak at m/e 368 (IX) indicates the loss of 124 mass units from the molecular ion, which was similar to the fragment VIII in nymphaeol-B (II); we assumed that the position of geranyl group and γ,γ dimethylallyl group were thus located at C_2 , and C_8 . In addition, the similarities of three methyl singlets of geranyl group in the 1 H-NMR (acetone-d₆) spectrum of nymphaeol-B (& 1.56, 1.62, 1.70) and -C (& 1.56, 1.61, 1.70) supported the assignment of the structure of nymphaeol-C as III.

These structures of nymphaeol-A, -B and -C were also supported by the 13 C-NMR spectra indicated in the next page.

	Chemical	Chemical shift (ppm)					Chemical shift (ppm)		
Carbon No.	. Eriodic.	NymA	NymB	NymC	Carbon No.	NymA	NymB	NymC	
2	78.3	79.5	77.0	76.9	1,,	21.4	25.1	25.1	
3	42.2	43.4	43.1	43.3	2**	123.2	123.8	123.7	
4	196.2	196.5	197.0	197.0	3**	134.3	135.0	135.0	
5	163.4	161.7	164.8	161.8	4,,	16.1	16.3	16.3	
6	95.7	108.6	96.6	108,7	5**	40.3	40.3	40.2	
7	166.6	164.7	167.0	164.4	6''	27.2	27.2	27.2	
8	94.8	95.0	95.6	95.0	7 ,,	124.7	124.7	124.6	
9	162.8	161.3	164.2	161.8	8,,	131.0 ^b	131.4	131.3	
10	101.7	102.5	102.8	102.7	g , ,	17.6	17.6	17.8	
1'	129.4	130.9 ^b	129.4	129.5	10,,	25.7	25.7	25.7	
2 '	114.2	114.2	127.3	127.1	1,,,	-	-	21.5	
3 '	145.1 ^a	145.4 ^c	143.7	143.6	2,,,	_	-	123.3	
4 '	145.6 ^a	145.8 ^c	145.2	145.1	3,,,	_	_	130.7	
5'	115.3	115.7	113.2	113.2	4,,,	-	_	17.8	
6,	117,8	118.6	118.2	118.1	5,,,	-	-	25.7	

Comparison of the 13 C-NMR chemical shifts of eriodictyol (in DMSO-d₆) 10 , nymphaeol-A (in acetone-d₆), nymphaeol-B (in acetone-d₆) and nymphaeol-C (in acetone-d₆)

Values with the same superscript could be interchanged.

The absolute configuration of nymphaeol-A, -B and -C were determined as (-)-2Sflavanones by the CD spectra¹¹. Since the 2-aryl group in (-)-nymphaeol-A (I) is equatorial $(J_{2,3ax}=12.4 \text{ Hz})^{12}$ the positive Cotton effect at 330 nm ($\Delta \epsilon + 0.49$) and the negative Cotton effect at 293 nm ($\Delta \epsilon - 3.58$) allows the assignment of the S configuration at C-2 in (-)-nymphaeol-A (I). Similarly, nymphaeol-C (III) indicated the positive Cotton effect at 333 nm ($\Delta \epsilon + 0.55$) and the negative Cotton effect at 292 nm ($\Delta \epsilon - 6.41$). The absolute configuration of nymphaeol-B (II) was established by the measurement of CD spectrum [335 nm ($\Delta \epsilon + 1.30$) and 306 nm ($\Delta \epsilon$ -2.39)] of its tetraacetate (VI). References

- 1. Present address: 12-cho, Ibusuki, Kagoshima 891-04, Japan.
- 2. K. Yakushijin, S. Sugiyama, Y. Mori, H. Murata and H. Furukawa, <u>Phytochemistry</u>, in press.
- J. Massicot and J. -P. Marthe, <u>Bull. Soc. Chim. France</u>, 1962, 1962; R. Hansel,
 D. Ohlendorf and A. Pelter, <u>Z. Naturforsh.</u>, 1970, 25B, 989.
- A. Ueno, M. Ichikawa, T. Miyase, S. Fukushima, Y. Saiki and K. Morinaga, <u>Chem.</u> Pharm. <u>Bull.</u> (Tokyo), 1973, <u>21</u>, 1734.
- 5. T. Nomura and T. Fukai, <u>Heterocycles</u>, 1978, 9, 1295.
- 6. H. Audier, Bull. Soc. Chim. France, 1966, 2892.
- 7. G. Cardillo, L. Merlini and R. Mondelli, Tetrahedron, 1968, 24, 497.
- 8. M. Kozawa, N. Morita, K. Baba and K. Hata, <u>J. Pharm. Soc. Japan</u>, 1978, <u>98</u>, 210;
 T. Nomura, T. Fukai, J. Uno and T. Arai, <u>Heterocycles</u>, 1978, <u>9</u>, 1543.
- 9. F. Bohlmann, C. Zdero, R. M. King and H. Robinson, <u>Phytochemistry</u>, 1979, 18, 1246; F. Bohlmann and W. -R. Abraham, <u>ibid</u>., 1979, 18, 1851.
- 10. H. Wagner and V. M. Chari, <u>Tetrahedron Lett</u>., 1976, 1799.
- 11. W. Gaffield, Tetrahedron, 1970, 26, 4093.
- 12. J. W. Clark-Lewis, Aust. J. Chem., 1968, 21, 2059.

Received, 26th November, 1979