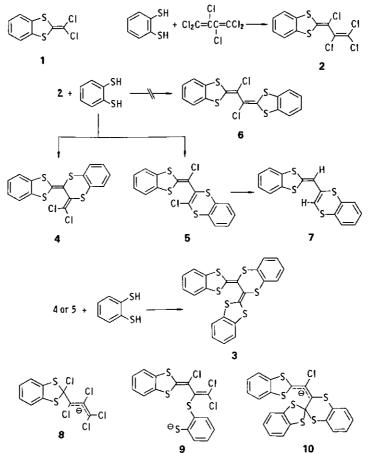
THE REACTION OF O-BENZENEDITHIOL WITH HEXACHLOROBUTADIENE

<u>Masao Mizuno</u> and <u>Michael</u> P. <u>Cava</u> <u>Department of Chemistry, University of Pennsylvania</u> <u>Philadelphia</u>, Pennsylvania 19104, U.S.A.


The reaction of <u>o</u>-benzenedithiol with hexachlorobutadiene in the presence of triethylamine affords four products, in ratios dependent upon the experimental conditions employed. These products are assigned the structures of the tetrachloride <u>2</u>, the isomeric dichlorides <u>4</u> and <u>5</u>, and the fully substituted benzodithiine <u>3</u>. Dichloride <u>4</u> is resistant to zinc reduction, whereas its isomer <u>5</u> is reduced by zinc to the corresponding dithiine derivative 7.

In the course of studying the scope and mechanism of the Hurtley-Smiles tetrathiafulvalene synthesis, we recently reported a reinvestigation of the reaction of <u>o</u>-benzenedithiol with tetrachloroethylene, in which we found that the intermediate 2-dichloromethylene-4,5-benzo-1,3dithiole (<u>1</u>) could be easily isolated.¹ We subsequently turned our attention to a study of the more complex reaction of <u>o</u>-benzenedithiol with hexachlorobutadiene, the results of which are reported here.

The reaction of <u>o</u>-benzenedithiol (2 equiv) with hexachlorobutadiene (1 equiv) in refluxing acetonitrile containing excess triethylamine afforded the expected tetrachloride $\frac{2}{(20\%)}$, mp 64-65^o, as well as a dichloride fraction (35%).² When the ratio of dithiol to hexachlorobutadiene was raised to 3:1, a comparable yield of dichloride fraction was isolated, but the yield of tetrachloride $\frac{2}{2}$ dropped to 5-12% and a new product, the dithiine $\frac{3}{2}$, mp 275-277^o, was obtained in 20-26% yield.

The dichloride fraction could be separated by fractional crystallization and proved to be a 40:60 mixture of dichloride $\underline{4}$, mp 141-142°, and dichloride $\underline{5}$, mp 165-167°. Both the cmr spectrum of $\underline{4}$ (δ 126.9, 130.1, 131.4, 133.3, 134.7, 136.4, 138.0, 139.3, 141.3, 142.8) and of $\underline{5}$ (125.9, 129.9, 130.0, 132.2, 132.7, 138.7, 138.8, 139.5, 140.8) contained a sufficient number of signals

-415-

.

to rule out the more symmetrical structure $\underline{6}$. Both compounds reacted with $\underline{0}$ -benzenedithiol and triethylamine to give the fully substituted dithiine $\underline{3}$ in high yield.

Reduction of <u>5</u> with zinc and refluxing aqueous ethanol (15 hours) gave 73% of the corresponding reduced product <u>7</u>, mp 167-168⁰. In accord with its unsymmetrical structure, the pmr structure of <u>7</u> showed, in addition to an aromatic envelope at δ 7.16-7.40 (8 H), two sharp and different olefinic protons at 6.22 and 6.40, respectively. Under similar reducing conditions, both the dichloromethylene isomer <u>4</u> and the model compound <u>1</u> were unreactive and were recovered unchanged.

Mechanistically, the formation of tetrachloride $\underline{2}$ is to be expected in view of the highly stabilized nature of the intermediate anion $\underline{8}$. Conversion of $\underline{2}$ to both dichlorides $\underline{4}$ and $\underline{5}$ is best explained by assuming the formation of the common intermediate anion $\underline{9}$. Finally, whereas the thiolation of $\underline{4}$ to $\underline{3}$ is unexceptional, the conversion of $\underline{5}$ to $\underline{3}$ requires ring opening of the original dithiine ring of $\underline{5}$ and formation of a new dithiine ring in $\underline{3}$; anion $\underline{10}$ is a proposed intermediate. The conversion of $\underline{5}$ to $\underline{3}$ has analogy in some previously reported transthiolation reactions of 1,3-dithiole derivatives.¹

ACKNOWLEDGEMENT. This work was supported by the National Science Foundation MRL program under Grant DMR 76-00678.

REFERENCES AND NOTES

- 1. M. Mizuno and M. P. Cava, J. Org. Chem., 1978, 43, 416.
- 2. Satisfactory elemental analyses and spectral data were obtained for all new compounds (2-5) and 7).

Received, 15th October, 1979