A NEW CARBON-CARBON BOND FORMATION REACTION AT THE C-4 POSITION OF A $\beta\text{-LACTAM}$

Tetsuji Kametani^{*}, Toshio Honda, Junko Sasaki, Hirofumi Terasawa, Yoshito Nakayama, and Keiichiro Fukumoto
Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

Abstract — Reaction of 4-acetoxy-2-azetidinone ($\frac{1}{2}$) with various organolithiums gave the corresponding C-4 substituted compounds ($\frac{2}{2}$), ($\frac{3}{2}$), and ($\frac{5}{2}$). Treatment of $\frac{1}{2}$ with bromoacetaldehyde diethyl acetal in the presence of magnesium afforded 4-ethoxy-2-azetidinone ($\frac{6}{2}$) as the only product.

Since carbapenem type antibiotics, such as thienamycin 1 and olivanic acid 2 are currently very important compounds from the biological point of view, we have been investigating the synthesis of these compounds by the condensation of 4-acetoxy-2azetidinone with active methylene compounds³. With regard to C-4 substitution of β -lactams, a few papers have been published^{4,5} in which the carbenoid reaction to sulfur was used. Moreover, the reaction of a cuprate reagent with 4-chloro-2azetidinone derivative has recently been described⁶. We report here a new carboncarbon bond formation reaction at the C-4 position of a β -lactam which should be very useful in the synthesis of carbapenem and carbacephem type antibiotics. Treatment of the β -lactam⁷ (1) with 1 eq. v. of n-butyllithium in tetrahydrofuran at -78° C for 15 min afforded the 4-buty1-2-azetidinone (2) in 12 % yield⁸. The spectroscopic data for all substituted $\beta\text{--lactams}$ prepared are summarized in Table. Reaction of the β-lactam (1) with the lithium salt of dimethyl malonate, prepared from n-butyllithium and hexamethyldisilazane in tetrahydrofuran, gave the corresponding C-4 substituted product (3) in 20 % yield8, together with the cleaved compound (4); mp 152°C; v_{max} (CHC1₃) 1740 (C=0) cm⁻¹; δ (CDC1₃) 2.68 (2H, d, J = 6 Hz, $2 \times -C\underline{H}(CO_2Me)_2$), 3.33 (1H, m, $C\underline{H}CH_2$ -), 3.78 (12H, s, 4 x $OC\underline{H}_3$), and 6.03 br (2H, s, NH_2); m/e 334 (M⁺ + 1). Introduction of an alkoxycarbonyl group to the

Table

Data Compd.	IR v _{max} (CHC1 ₃) cm ⁻¹	NMR &(CDC1 ₃) ppm	MS
2	3400(NH) 1750(C=0)	3.35-3.80(1H, m, C ₄ - <u>H</u>) 7.10-7.60(1H, brs, N <u>H</u>)	128 (M ⁺ +1) 127 (M ⁺)
3	3425 (NH) 1740 (C=0) 1715 (C=0)	2.85(2H, d, J=10Hz, -CH ₂ CO) 3.30(1H, m, C ₄ -H) 3.55(1H, d, J=6Hz, -CH(CO ₂ Me) ₂) 3.83(6H, s, 2 x OCH ₃) 8.66(1H, brs, NH)	202 (M ⁺ +1) 170
S	3425 (NH) 1760 (C=O) 1730 (C=O)	1.31(3H, t, J=7Hz, -CH ₂ CH ₃) 2.47-2.87(1H, m, C ₃ -H) 2.67(2H, d, J=6Hz, -CH ₂ CO ₂) 3.20(1H, ddd, J=2,5 and 15Hz, C ₃ -H) 3.65-4.10(1H, m, C ₄ -H) 4.30(2H, q, J=7Hz, -CH ₂ CH ₃) 7.67(1H, brs, NH)	158 (M ⁺ +1) 157 (M ⁺) 129 114 70
6	3425 (NH) 1770 (C=O)	1.27(3H, t, J=7Hz, -CH ₂ CH ₃) 2.83(1H, dd, J=2 and 15 Hz, C ₃ -H) 3.58(2H, q, J=7Hz, -CH ₂ CH ₃) 5.10(1H, dd, J=2 and 3 Hz, C ₄ -H) 7.40(1H, brs, NH)	116(M ⁺ +1) 72

 $[\]mbox{\scriptsize +}$ NMR spectral data are obtained by JNM-PMX 60 in $\mbox{\scriptsize CDCl}_3.$

C-4 position was then carried out as follows. The β -lactam ($\frac{1}{3}$) was treated with the lithium salt of ethyl acetate in tetrahydrofuran at ~ 78 to $\sim 30^{\circ}$ C for 3 h to give the desired compound ($\frac{5}{3}$) in 15 % yield⁸. However, attempted introduction of an acetaldehyde unit by treatment of bromoacetaldehyde diethyl acetal with magnesium turning afforded none of the desired product, but produced 4-ethoxy-2-azetidinone ($\frac{1}{3}$) in 24 % yield⁸.

In order to confirm its structure, compound (ξ) was prepared by an alternative route. Silylation of diethyl aminoglutaconate 9 (ζ) using trimethylchlorosilane and triethylamine and treatment of the product with ethylmagnesium bromide in tetrahydrofuran yielded a compound which was identical to the above product (ξ).

Scheme

$$EtO_2^{\circ}CO_2Et \xrightarrow{2) EtMgBr} CO_2Et$$
(7)
(5)

Thus, a new carbon-carbon bond formation reaction at the C-4 position of a β -lactam has been achieved, and its utilization is expected to provide a useful synthetic pathway to carbapenem and carbacephem type antibiotics.

REFERENCES

- G. Albers-Schönberg, B. H. Arison, O. D. Hensins, J. Hirshfield, K. Hoogsteen,
 E. A. Kaczka, R. E. Rhodes, J. S. Kahan, F. M. Kahan, R. S. Ratcliffe, E.
 Walton, L. J. Ruswinkle, R. B. Morin, and B. G. Christensen, J. Amer. Chem. Soc.,
 1978, 100, 6491.
- 2. J. D. Hood, S. J. Box, and M. S. Verrall, <u>J. Antibiotics</u>, 1979, 32, 295.
- 3. T. Kametani, S. Hirata, H. Nemoto, M. Ihara, and K. Fukumoto, <u>Heterocycles</u>, 1979, 12, 523.
- 4. I. Ernest, Tetrahedron, 1977, 33, 547.
- 5. M. D. Bachi, O. Goldberg, and A. Gross, Tetrahedron Letters, 1978, 4167.
- 6. H. Onoue, M. Narisada, S. Uyeo, H. Matsumura, K. Okada, T. Yano, and W. Nagata, Tetrahedron Letters, 1979, 3867.

- 7. K. Clauss, D. Grimm, and G. Prossel, Annalen, 1974, 539.
- 8. Yields are not optimized.
- 9. H. Feuer and W. A. Swarts, <u>J. Amer. Chem. Soc.</u>, 1955, 27, 5427.

Received, 25th December, 1979