AN ALTERNATIVE SYNTHESIS OF DIPEPTIDO-AMINOBENZOPHENONE AND NOVEL HETEROCYCLIC FORMATIONS OF RING-OPENED 1,4-BENZODIAZEPINE DERIVATIVES 1

Kentaro Hirai,* Teruyuki Ishiba, Toshio Fujishita, and Hirohiko Sugimoto Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

<u>Abstract</u> — An alternative synthesis of Gly-Gly-N-methylaminobenzophenone (<u>1a</u>) <u>via</u> iodoacetyl glycylaminobenzophenone (<u>2</u>) is described. Novel ring closures of <u>2</u> and cyano derivative 3 are also reported.

The 1,4-benzodiazepines have been known as potent tranquilizing, anticonvulsant, and hypnotic agents. Recently, we have prepared peptido-aminobenzophenones ($\underline{1}$) as a novel class of ring-opened derivatives of 1,4-benzodiazepines. 1,2

We wish to report an alternative synthesis of pharmacologically interesting 4-chloro-2-(\underline{o} -chlorobenzoyl)-N-methyl-N $^{\alpha}$ -glycylglycinanilide ($\underline{1a}$) 3 and novel ring closures of iodoacetylglycylaminobenzophenone ($\underline{2}$) and cyanoacetylglycylaminobenzophenone ($\underline{3}$) which give heterocyclic compounds.

1 la: $R = CH_3$, R' = R'' = H, X = Y = CI

Z-Glycine was activated by $SOCl_2$ in hexamethylphosphoramide (HMPA)⁴ at -8~-5° and coupled with N-methylaminobenzophenone ($\underline{4}$) to give Z-glycyl-N-methylaminobenzophenone ($\underline{5}$), mp 90-92°, in 81% yield. Compound $\underline{4}$ was readily obtained from aminobenzophenone ($\underline{6}$) by treatment with KOH in DMF or DMSO followed by the action of CH_3I at room temperature in 89-91% yield. This method is simpler and safer than other methods \underline{via} tosyl amide⁵ or using sodium hydride.⁶ Coupling of $\underline{6}$ with Z-glycine by $SOCl_2/HMPA$ at -8~-5°C gave Z-glycylaminobenzophenone ($\underline{7}$), mp 146-147°, in 80% yield. N-Methylation of $\underline{7}$ by the action of CH_3I after treatment with sodium hydride (50% oil dispersion) in DMF at room temperature also gave $\underline{5}$ in 86.5% yield. Deblocking of $\underline{5}$ with 20%

HBr-AcOH at room temperature gave glycyl-N-methylaminobenzophenone hydrobromide (8), mp 156-159°, in 96.5% yield.

Since glycyl-N-methylaminobenzophenone hydrobromide ($\underline{8}$) spontaneously cyclized on neutralization giving 1,4-benzodiazepine ($\underline{9}$), 7 chloroacetylation of $\underline{8}$ was carried out by the action of chloroacetyl chloride in DMF or HMPA at room temperature in the absence of base and the coupling product $\underline{10}$, mp 134-136°, was obtained in 89% yield without concomitant production of the cyclized compound $\underline{9}$. Chloroacetyl compound $\underline{10}$ was converted into the iodo derivative $\underline{2}$, mp 168.5-169.5°, by the action of KI in acetone with refluxing. Reaction of $\underline{2}$ with potassium phthalimide in DMF at room temperature gave Pht-Gly-Gly-N-methylaminobenzophenone ($\underline{11}$) in 98% yield. Compound $\underline{11}$ was also obtained from $\underline{8}$ by the action of phthalylglycyl chloride in DMF at room temperature in the absence of base in 93.5% yield. Since the phthalyl group in $\underline{11}$ is

readily removed by hydrazinolysis, 1 this is an alternative synthesis of la.

An attempt to methylate $\underline{2}$ by the action of $\operatorname{CH}_3\operatorname{I}$ after treatment with sodium hydride in DMF at room temperature gave compound $\underline{12}$, mp 198-199°, in 66% yield, instead of the N-methylated compound. Elemental analysis indicated that $\underline{12}$ had one HI less than $\underline{2}$. IR of $\underline{12}$ showed two amido carbonyl bands at 1720 and 1675 cm⁻¹ (Nujol). NMR (CDCl₃) of $\underline{12}$ exhibited the following signals: δ 2.58 (3H, s, N-CH₃), 3.42 and 4.62 (2H, ABq, J = 14 Hz, N-CH₂-CO), 4.38 (2H, s, 0-CH₂-CO). These data suggested the structure of $\underline{12}$ to be oxazolo[3,2-d][1,4]benzodiazepine. This type of heterocycle was previously obtained from 1,4-benzodiazepine through several steps \underline{via} a 1,3-dipolar cycloaddition product with nitrile oxide. Note that double cyclization of $\underline{2}$ occurred readily and $\underline{12}$ was obtained in one step. This reaction may be explained as follows: the amide N-anion of $\underline{2}$ attacked the carbon atom in the benzoyl carbonyl group and the O-anion formed attacked the methylene group to remove the terminal iodine atom giving the tricyclic compound 12.

Cyanoacetyl derivative $\underline{3}$, mp 139-140°, was prepared from $\underline{10}$ by the action of KCN and KI in DMF at room temperature in 59.4% yield. When $\underline{3}$ was treated with sodium hydride in DMF at room temperature, compound $\underline{13}$, mp 191-193°, was obtained in 73% yield. Elemental analysis indicated that $\underline{13}$ contained one $\mathrm{H_2O}$ less than $\underline{3}$. The UV spectrum showed a pattern characteristic of quinolone derivatives $\mathrm{P}[\lambda_{\mathrm{max}}^{\mathrm{EtOH}}]$ 216, 245, 292, 303, 375 nm (log & 4.68, 4.62, 4.02, 3.97, 3.78)]. The IR (Nujol) spectrum showed a C=N band at 2235 cm⁻¹ with a stronger intensity than $\underline{3}$ (2260 cm⁻¹). NMR spectroscopy (CDCl $_3$) gave the following signals: δ 2.82 (3H, d, J = 5 Hz, NHCH $_3$), 4.87 and 5.72 (2H, ABq, J = 16 Hz, CH $_2$). These data strongly supported a quinolone structure having a conjugated cyano group and a methylamidomethyl group for $\underline{13}$.

An N→N Smiles rearrangement in halogenoacetamide was reported in nitrobenzene 10 and thiophene 11 derivatives. Possible mechanisms forming 13 from 3 may be explained as follows: a) intramolecular nucleophilic aromatic rearrangement of amide N-anion of 3 formed 15 via 14 then dehydration gave 13, or b) dehydration of 3 between active methylene and benzoyl carbonyl groups gave 16, followed by a transannular nucleophilic aromatic rearrangement facilitated by activation of the aromatic ring by conjugated cyano and amido groups giving 13. 12

REFERENCES AND NOTES

- This paper is Part 3 of a series on "Benzophenone related Compounds." Part 2: K. Hırai,
 Ishiba, H. Sugimoto, K. Sasakura, T. Fujishita, T. Toyoda, Y. Tsukinoki, H. Joyama,
 H. Hatakeyama, and K. Hirose, submitted to J. Med. Chem.
- K. Hiraí, T. Ishiba, H. Sugimoto, K. Sasakura, T. Fujishita, Y. Tsukinokí, and K. Hirose, Chem. Pharm. Bull. (Tokyo), 1978, 26, 1947.
- 3. K. Hirose, T. Matsushita, M. Eigyo, H. Joyama, A. Fujita, Y. Tsukinoki, T. Shiomi, and K. Matsubara, submitted to Arzneim.-Forsch.
- 4. J. F. Normant and H. Deshayes, Bull. Soc. Chim. France, 1972, 2854.
- L. H. Sternbach, R. I. Fryer, W. Metlesics, G. Sach, and A. Stempel, <u>J. Org. Chem.</u>, 1962, <u>27</u>, 3781.
- 6. M. Yamamoto, M. Koshiba, S. Inaba, and H. Yamamoto, Japan Patent 51-18423 (1976).
- 7. A. Walser, A. Szente, and J. Hellerbach, J. Org. Chem., 1973, 38, 449.
- 8. R. Jaunin, W. E. Oberhänsli, and J. Hellerbach, Helv. Chim. Acta, 1972, 55, 2975.
- (a) R. I. Fryer, B. Brust, and L. H. Sternbach, <u>J. Chem. Soc.</u>, 1964, 3097. (b) A. Terada,
 Y. Yabe, T. Miyadera, and R. Tachikawa, <u>Chem. Pharm. Bull.</u> (Tokyo), 1973, 38, 373.
- 10. N. W. Gilman, P. Levitan, and L. H. Sternbach, J. Org. Chem., 1973, 38, 373.
- 11. K. Hirai, H. Sugimoto, and T. Ishiba, J. Org. Chem., 1980, 45, 253.
- 12. Correct combustion analyses were obtained for all new compounds whose melting points (uncorrected) are given.

Received, 7th March, 1980