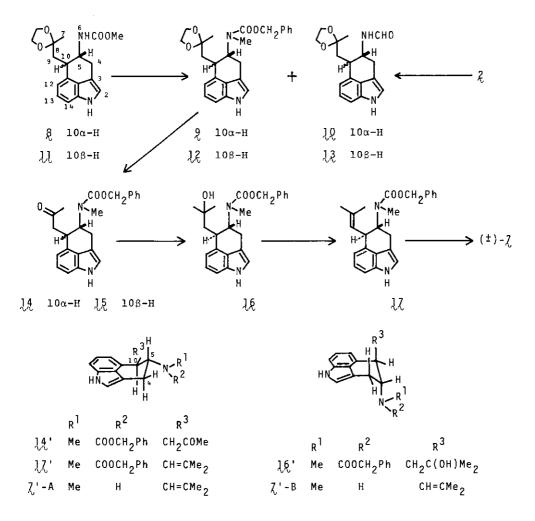

TOTAL SYNTHESIS OF (\pm) -6,7-SECOAGROCLAVINE[†]

Mitsutaka Natsume* and Hideaki Muratake Research Foundation Itsuu Laboratory Tamagawa 2-28-10, Setagaya-ku, Tokyo 158, Japan

Abstract: An ergot alkaloid, 6,7-secoagroclavine was synthesized in racemic form from 1-methoxycarbonylpyrrole in 15 steps.


In the previous communication, ¹ we reported a synthesis of 8-oxo-6,7-secoergoline derivatives \mathfrak{F} and \mathfrak{F} , from 1-methoxycarbonyl-4-(3-oxo-1-butyl)indole² (\mathfrak{F}) by way of a tricyclic indole derivative \mathfrak{F} . For the goal of the ergot alkaloid synthesis, it is necessary to introduce one carbon unit into the ketone group of \mathfrak{F} and \mathfrak{F} . However, an intramolecular participation of the carbamate function prevented the carbanion attack to the ketone group, and either the recovery of \mathfrak{F} and \mathfrak{F} or the formation of an unstable compound, probably \mathfrak{F} or \mathfrak{F} , was observed in the reaction with the Grignard or Wittig reagent. This difficulty was overcome by modification of the carbamate group in \mathfrak{F} to N-methyl-benzyloxycarbonyl group (*vide infra*), and we wish to report here the first total synthesis of 6,7-secoagroclavine (\mathfrak{I}), which was isolated from *Claviceps purpurea*, strain AA-218.³

† Dedicated to the memory of the late Prof. Eiji Ochiai, who aroused our interest in the synthetic work of the ergot alkaloids. The ethylene ketal derivative¹ & was reduced with LiAlH_4 in refluxing THF for 0.5 hr and the resulting mixture was immediately treated with ClCOCH_2Ph in CH_2Cl_2 in the presence of Et_3N . $2,^{4,5}$ mp 152-153.5°, was obtained in 55% yield, together with the formation of $4\chi^6$ (35% yield) as a by-product. The same series of reactions were applied to the corresponding 5,10-cis compound¹ 4χ ; and $4\chi^7$ and $4\chi^8$ were obtained in 67% and 18% yields, respectively. ¹H NMR spectra of 4χ and 4χ demonstrated the presence of NHCHO function and preparation of 4χ (31% yield) and 4χ (38% yield) from the nitro derivative¹ χ by reduction with LiAlH₄ in refluxing THF, followed by formylation with HCOOH-Ac₂O confirmed their structures. Of these, 4χ was subjected to the prolonged heating (7 hr) with LiAlH₄ in THF, followed by the treatment with ClCOOCH₂Ph in the presence of Et₃N to give 4χ in 20% yield and the starting material 4χ in 28% yield. This fact implied exceptional resistance of 4χ to the LiAlH₄ reduction and explained the existence of 4χ and 4χ during the conversion of ξ and 4χ into ξ and 4χ .

Removal of the ethylene ketal group from 2 and 12 was readily carried out by stirring in acetone in the presence of TsOH at room temperature and 14^9 and 15^{10} were obtained in 81% and 89% yields, respectively. In the 1 H NMR spectrum of 14, the coupling constant between H-5 at δ 4.47 and H-10 at δ 3.87 was observed to be 10.5 Hz and this fact provided us with a direct evidence for the trans nature of two side chains on the ring C, as illustrated in the formula 14'. Grignard reaction of $\frac{1}{14}$ with MeMgI proceeded without trouble and $\frac{1}{16}^{11}$ was obtained in 87% yield. Judging from the ¹H NMR spectrum of 16 showing H-5 at δ 4.73 as a doublet of double doublet with J=5.5, 5.5, 5.5 Hz, the structure 16' having two side chains in the diaxial relationship was assigned to the Grignard reaction product. Dehydration from 16 was readily achieved by refluxing $C_6 H_6$ solution of 16 in the presence of TsOH and 17^{12} was isolated as the sole product in 83% yield. Again, the structure 17, was suggested by 1 H NMR signals of H-5 at δ 4.48 and H-10 at δ 4.06, possessing J_{5.10}=10 Hz. Elimination of the N-protecting group was effected by treatment of 17 with Na in liquid NH₃. (±)-7,¹³ mp 202-205°, was finally obtained in 80% yield and identical with 6,7-secoagroclavine by comparison of the behavior on TLC, ¹⁴ and spectral data (UV, IR, ¹⁵ MS, ¹H NMR) with those of the natural specimen, which was kindly supplied by Dr. Horwell.

In a CDCl₃ solution, 6,7-secoagroclavine existed as two conformers of slow equilibrium, χ '-A and χ '-B, the former being predominant, since ¹H NMR spectrum

exhibited two types of H-10 signals at the same chemical shift and the double resonance technique revealed that the H-10 of 7'-B coupled only with the vinyl proton of the dimethylallyl system. In CD₃OD, H-10 was observed as a simple double doublet (J=10, 7.5 Hz) at δ 3.93, implying that second rocarine was present mostly in the conformation of 7'-A in this solvent.

Acknowledgement — The authors express their deep gratitude to Dr. D.C. Horwell of Lilly Research Centre Ltd. in England for generous gift of 6,7-secoagroclavine and its spectral data. A part of this work was supported by Grant-in-Aid for Special Project Research, Chemical Research in Development and Utilization of Nitrogen-Organic Resources, from the Ministry of Education, Science and Culture, which is gratefully acknowledged.

REFERENCES AND NOTES

1. M. Natsume and H. Muratake, Heterocycles, 14, 445 (1980).

2. M. Natsume and H. Muratake, Tetrahedron Lett., 3477 (1979).

- 3. D.C. Horwell and J.P. Verge, Phytochemistry, <u>18</u>, 519 (1979); Chem. Abst., <u>91</u>, 157970m (1979). The structure of 6,7-secoagroclavine was erroneously printed in these Journals and Dr. Horwell informed me that he already put forward the correction of its structure to the Editor of Phytochemistry.
- 4. Satisfactory result of elementary analysis was obtained for C,H,N.
- 5. MS m/e: 420 (M⁺). IR (KBr) cm⁻¹: 3425, 1680. ¹H NMR¹⁶ (CDCl₃, 60°) δ: 1.41 (3H, s), 2.14 (2H, d, J=4.5 Hz), 2.80 (3H, s), 3.04 (2H, d, J=7.5 Hz), 3.27 (1H, dt, J=7.5, 4.5 Hz), 3.90 (4H, br s), 4.63 (1H, dt, J=7.5, 7.5 Hz), 5.17 (2H, s), 6.79 (1H, br s), 7.03-7.43 (3H, m), 7.33 (5H, s), 7.93 (1H, br s).
- 6. MS m/e: 300 (M⁺). IR (KBr) cm⁻¹: 3320, 1660. ¹H NMR (CDCl₃) δ: 1.44 (3H, s),
 1.95 (2H, d, J=6 Hz), 2.82 (1H, dd, J=16.5, 4.5 Hz), 3.22 (1H, dd, J=16.5, 4.5 Hz), 3.26 (1H, dt, J=4.5, 6 Hz), 4.03 (4H, br s), 4.92 (1H, dddd, J=9, 4.5, 4.5, 4.5 Hz), 5.76 (1H, br d, 9 Hz, NHCHO), 6.80-7.27 (4H, m), 7.85 (1H, s, CHO), 8.39 (1H, br s).
- 7. MS m/e: 420 (M⁺). IR (KBr) cm⁻¹: 3360, 1680. ¹H NMR (CDCl₃) δ: 1.36 (3H, s),
 2.10 (2H, d, J=5 Hz), 2.63 (3H, s), 3.08 (2H, d, J=5.5 Hz), 3.60 (1H, dt, J=5, 5 Hz), 3.86 (4H, br s), 4.76 (1H, dt, J=5, 5.5 Hz), 5.17 (2H, s), 6.77 (1H, br s), 6.87-7.47 (3H, m), 7.33 (5H, s), 8.21 (1H, br s).
- 8. MS m/e: 300 (M⁺). IR (KBr) cm⁻¹: 3420 (sh), 3330, 1665. ¹H NMR (CDCl₃) δ: 1.46 (3H, s), ea. 1.90-2.36 (2H, m), 2.91 (1H, dd, J=15.5, 5.5 Hz), 3.19 (1H, dd, J=15.5, 3.5 Hz), 3.27-3.53 (1H, m), 4.03 (4H, br s), 4.67-5.00 (1H, m), 5.31-6.53 (1H, m, N<u>H</u>CHO), 6.80-7.28 (4H, m), 8.03 and 8.27 (1H, s each, CHO, rotational isomers), 8.20 (1H, br s).
- 9. MS m/g: 376 (M⁺). IR (KBr) cm⁻¹: 3400, 1692. ¹H NMR (CDCl₃, 60°) δ: 2.12 (3H, s), 2.54-3.27 (4H, m), 2.81 (3H, s), 3.87 (1H, ddd, J=10.5, 5, 5 Hz), 4.47 (1H, ddd, J=10.5, 10.5, 6 Hz), 5.15 (2H, s), 6.57-6.83 (2H, m), 6.94-7.42 (2H, m), 7.30 (5H, s), 8.01 (1H, s).
- 10. MS m/e: 376 (M⁺). IR (KBr) cm⁻¹: 3450-3350, 1695. ¹H NMR (CDCl₃) δ: 2.04 (3H, s), 2.69 (3H, s), 2.77 (2H, d, J=7 Hz), 3.14 (2H, d, J=6 Hz), 4.04 (1H, dt, J=5, 7 Hz), 4.70 (1H, dt, J=5, 6 Hz), 5.15, (2H, s), 6.66-6.89 (2H, m), 6.94-7.43 (2H, m), 7.31 (5H, s), 8.14 (1H, br s).
- 11. MS m/e: 392 (M⁺). IR (KBr) cm⁻¹: 3430, 3350 (sh), 1675. ¹H NMR (CDCl₃,

60°) δ: 1.26 (3H, s), 1.36 (3H, s), 1.71 (1H, dd, J=15, 4.5 Hz), 1.91 (1H, dd, J=15, 6 Hz), 2.38-3.17 (OH), 2.57 (3H, s), 3.02 (1H, dd, J=16.5, 5.5 Hz), 3.17-3.48 (1H, m), 3.26 (1H, dd, J=16.5, 5.5 Hz), 4.73 (1H, ddd, J=5.5, 5.5, 5.5 Hz), 5.14 (2H, s), 6.78-7.42 (4H, m), 7.30 (5H, s), 8.09 (1H, br s).

- 12. MS m/e: 374 (M⁺). IR (KBr) cm⁻¹: 3360, 1680, 1605. ¹H NMR (CDCl₃, 60°) δ:
 1.75 (3H, s), 1.80 (3H, s), 2.71-3.46 (2H, m), 2.90 (3H, s), 4.06 (1H, dd, J=
 10, 10 Hz), 4.48 (1H, ddd, J=10, 10, 6 Hz), 4.91-5.36 (3H, m), 6.64-6.87 (2H, m), 6.96-7.43 (2H, m), 7.30 (5H, br s), 7.92 (1H, br s).
- 13. MS m/e: 240 (M⁺). UV (95% EtOH) nm: 222, 280, 292. IR (CHCl₃) cm⁻¹: 3510 (s), 3340 (w), 3080 (w), 3020 (m), 2980 (s), 2950 (s), 2875 (m), 2815 (m), 1675 (w), 1610 (m), 1478 (w), 1447 (s), 1418 (w), 1384 (w), 1380 (m), 1352 (w), 1340 (m), 1288 (m), 1268 (w), 1212 (sh), 1159 (w), 1140 (m), 1108 (w), 1092 (w), 1076 (m), 1053 (w), 1028 (w), 1007 (w), 965 (w), 875 (w), 840 (w), 820 (w). ¹H NMR (CDCl₃) &: 1.84 (3H, d, J=1.5 Hz, Me), 1.88 (3H, d, J=1.5 Hz, Me), 2.01 (1H, s, exchangable, NH), 2.52 (3H, s, NMe), ca. 2.52-3.04 (2H, m, H-4_{ax}. and H-5), 3.08-3.50 (1H, m, H-4_{eq}.), 3.88 (br dd, J=10, 8 Hz) and 3.88 (d, J=10 Hz) (1H, H-10), 5.13 (1H, br d, J=10 Hz, -CH=C), 6.74 (1H, ddd, J=4.5 3.5, 1 Hz, H-12), 6.84 (1H, br s, H-2), ca. 6.98-7.27 (2H, m, H-13 and H-14), 8.18 (1H, br s, exchangable, NH).
- 14. Merck Silica Gel 60F₂₅₄. Dioxane:MeOH=2:0.5 afforded Rf=0.25, and CHCl₃: MeOH:conc.NH_OH=46:5:0.5 afforded Rf=0.44 for both samples.
- 15. IR (CHCl₃) of natural 7 cm⁻¹: 3482 (s), 3320 (w), 3060 (w), 3010 (sh), 2920 (s), 2862 (sh), 2802 (m), 1675 (w), 1610 (m), 1477 (sh), 1445 (s), 1417 (w), 1385 (sh), 1378 (m), 1351 (sh), 1340 (m), 1288 (m), 1268 (m), 1210 (sh), 1159 (w), 1142 (m), 1108 (sh), 1096 (w), 1077 (m), 1053 (w), 1028 (w), 1007 (w), 965 (w), 875 (w), 840 (sh), 820 (w). A minor discrepancy at 2980-2920 cm⁻¹ region may be attributable to the difference of resolution of the instruments.
- 16. All ¹H NMR spectra were taken at 90 MHz.

Received, 10th May, 1980