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Abstract —— Reaction of 4-bromo-2,4,6-tri-tert-butyl-2,5-cycichexadien-1-
one {]) with sodium azide was carried out in DMF to afford 4-azido-2,4,6-tri-
tert-buty1-2,5-cyclohexadien-i-one (4) in 85% yield. Thermal decocmposition
of 4 in boiling toluene gives 6-amino-2,4-di-tert-butylphenol (§). 2,4.6,8-
tetra-tert-butylphenoxazin-1-cne (Z) and 2,4,6,8a-tetra-tert-butyl-7-cyano-8-
ox0-5a,8a-dihydrocyclopenteno[2,3-b]benzoxazine (%). However, the thermal
decomposition of 4 was carried out under highly diluted conditions to afford
5 and 2,4-di-tert-butyl-5-cyano-2,4-cyclopentadien-1-one (g) in 48 and 50%
yields, respectively. It was also found that the thermal decomposition of &
in boiling toluene in the presence of acetic anhydride afforded 6-acetoamido-
2,4-di-tert-butylphenol {Q) and g in 47 and 50% yields, respectively. The re-
action pathways of the formation of 5, 8 and J were proposed in the present

paper.

It has been previously reported that 4-bromo-2,4,6-tri-t-butyl-2,5-cyclohexadien-1-one (l)
reacted with alcohols,2 sodium pheno]ates3 and amines such as piperidine and morpholinea to afford
the corresponding 4-substituted 2,4,6-tri-t-butyl-2,5-cyciohexadien-1-ones (%) which were easily

leaded to p-substituted phenols (%) by the acid-catalyzed trans- or dealkylation.
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When ] was treated with sodium azide in DMF at room temperature for 24 h, the expected 4-

o
azide-2,4,6 trx-t—buty]—2,5—cyc]uhexadien-1-one5[ 4, mp. 41-42 , pale yellow prisms ] was obtained
in 86% yield.
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Thermal decomposition of 4 was carried out in boiling toluene and the results are summarized
in Table 1 and Scheme 2.
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Table 1. Thermal Decomposition of 4 in Boiling Toluenea)

Run Time (h) Product (%}

1 1 5 (15}, 7 (15), § (50)

2b) 2 5 (48), 9 {50)

3¢) 1 6 {47}, 9 (50)
1 . . s

a) Uy luene 9/50 ml h) Highly diluted condition

c) Acetic anhydride (ACEO/ ]/1) was added into toTuene solution before the reaction

As is shown in Run 1, the thermal decomposition of 4 afforded €-amino-2,4-di-t-butyiphenol (Q 6

2,4,6,8-tetra-t-butylphenoxazin-1-one [ 1. mp. 220-221 C, blue prisms, 1it ,7 mp. 208“C ] and
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2,4,6,8a—tetra-t-buty1—7—cyano—8-oxo-5a,8a—dihydrocyc1openteno[2,3-b]benzuxazine8[§, mp. 184-185°C,
orange yellow plates] in 15, 15 and 50% yields, respectively.

Although Stegmann and Scheff]er7 reported that the oxidation of & with air in pyridine afforded
fof mp, EUBQC. the sample  prepared by their method has melting point of 220—22]06 which is same

as that of our sample.

air 7
in pyridine
This finding suggests that the the compound 1 obtained by Stegmann and Scheffler must be impure.
The structure of £ was confirmed by its elemental analysis and spectral data as well as chemi-

cal conversions shown in Scheme 3.
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When § was treated with acetic anhydride in the presence of sulfuric acid, N-acetylated compound9

r lg, mp. ISQ—IQOOC, coforiess prisms | was obtained. The reduction of § with Zn powder in acetic
acid-acetic anhydride afforded 2-amino-4,6-di-t-butylphenol diacetated [ 11, mp, ZOT-ZOZOE, calor-
less needles ] and 3,5—d1‘—t—buty1—2-cyan0—2-cyc1openten-1-one10 i 12, mp. 78-7906, colorless prisms ]
in 60 and 65% yields, respectively. When this reduction was carried out in CH3C00D, 4,b-dideutero
derivative léll was obtained but not 4,4-dideutero derivative lﬁ. This finding cancelled spivo struc-
ture )7 for compound 8. Hydrolysis of ]2 afforded 2-carbamoy1-3,5—di—t—buty1-2—cyclapenten—1—one]2

{ 17, mp. 134-136.5°C, colorless needles ] in 29% yield. Bromination of l% with NBS in CC14 gave
4-br‘om0-3,5—di-t—butyl-2-cyano-2—cyc1openten-'t-one13 [ 16+ mp. 82-840C, pale yellow prisms ] from
which hydrogen bromide was readily eliminated by the treatment with a strong organic base such as

DBU to afford 3,5-d1’-t-buty1—2-cyano—2,4—cyc]upentad1‘en-1—one14 L 9, mp. 130—131°C, reddish yellow
prisms ]. Reduction of 9 with Raney Ni-Al alloy in HCOOH afforded 12 in 70% yield. The results men-
tioned above supported strongly the structure proposed to cempound §, however, 1is geometrical struc-

ture (%a or QR) could not be confirmed by available data.
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The thermal decomposition of 4 under highly diluted conditions afforded 5 and § in 48 and 50%
yields, respectively, but not §. It was also found in the thermal decomposition of Q in the presence
of acetic anhydride that g and § were obtained in 48 and 50% yields, respectively, though the thermo-
lysis was not carried out under highly diluted conditions. From the above results, compounds Q and
2 seem to be intermediates for the formation of 8. However, reaction of 3 with % in boiling toluene
did not give any products but the starting compounds were recavered in almost quantitative yields.

5 + 9 2

no reaction

Although detailed reaction mechanism of the thermal decomposition of 4 is still obscure, the
reaction pathway of the formaticns of 2 § and 2 might be proposed as following Scheme 4. Under
highly diluted conditions, the reaction of g with ]9 might not progress because a chance of the
collision between 2 and 19 should be very Jow. Addition of acetic aphydride might accelerate the
decomposition of lg affording nitrene intermediate %g, therefore, the reaction of g with l% might

not accur in this condition.
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IR (KBr): wmax = 2100, 1660, 1640 cn™'. 'H-nnr (CDC1,}: 6 = 0.98 (9H, s), 1.27 (18H, s), 6.65

(2H, 5);

C-nmr (CDCI3): &5 = 25.52 (g}, 29.7 (q), 35.6 (s}, 39.1 (s}, 68.6 (s}, 136.2 (d),
150.3 {s}, 185.4 (s).
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IR {KBr): wmax = 3380, 2240, 1735 cn'. |

H-nmr (CDC]B): & = 0.95 (9H, 5}, 1.20 (9H, s), 1.40
(9H, s}, 1.62 (9H, s), 4.28 (1H, s, disappeared with DZU)’ 5.23 (1H, s), 6.63 (1H, d, J = 3 Hz),
6.78 (1K, d, J = 3Hz); 'C-nmr (CDC15): & = 26.1 {(q), 29.4 (q), 30.3 (q), 31.6 (q), 34.4 (s},
34.7 (s), 36.9 (s), 38.2 (s), 67.4 (s), 75.2 (d), 110.8 (d), 112.3 (s}, 114.5 (d}, 117.6 (s},
133.9 {s), 137.9 (s), 140.0 {s), 145.7 {s), 191.7 (s}, 200.4 {s}.

Ve e (CDCT,): &= 0.79, 1.33, 1.44, 1.56 {each 9H, s}, 1.97 (3K, s), 5.43 (14, 5}, 7.26 (TH,

d, J =3 Hz}, 7.32 {1H, d, J = 3 Hz}.
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IR (KBr): wmax = 2225, 1707, 1602 cn'. 'H-nmr (COCT;): &= 1.00 (94, s}, 1.40 (%H, s), 2.28
(1H, dd, J = 6 Hz, J = 3.5 Hz), 2.58 {1H, dd, J = 20 Hz, J = 3.5 Hz), 2.88 (1H, dd, J = 20 Hz,
3= 6 Hz)s e (COC1,): & < 27.2 (a), 28.6 (q), 33.4 {t), 33.7 (s). 37.1 (s}, 54.5 (d),

113.1 {s), 115.0 (s}, 197.5 (s}, 203.1 (s}

1 3): & =1.00 (9H, s), 1.40 (9K, s), 2.24 (0.1, br. 3), 2.58 (0.5H, br. s), 2.80

(0.5H, br. s). Mass: mfe 221 {M').

H-nmr (€DC1

3.5 Hz, J = 6 Hz), 2.48 (1H,

1H—nmr‘ (CDC]3): & =0.98 (94, s), 1.36 (9H, s), 2.18 (1H, dd,
dd, J = 3.5 Hz, J = 20 Kz}, 2.74 (1H, dd, J = 6 Hz, J = 20 Hz), 5,86, 7.08 {each 1H, br, s,

disappeared with D,0}.

1 1

IR (KBr): wwax = 2225, 1710, 1590 cm . 'H-pmr (CDCT3): &=1.00 (9H, s}, 1.52 (9H, s}, 2.42

{1H, d; J =1 Hz}, 5.00 {IH, d, & = 1 Hz).

IR (KBr): wmax = 2225, 1710 em |, |

H-nmr (CDCT4): 6 = 1.21 (3H, s}, 1.35 (9K, s), 6.76 (IH, s);
L (CDC14): & = 27.6 (), 28.9 (a), 32.5 (s}, 35.6 (s), 97.0 (s}, 113.2 (s), 136.1 {d),

146.3 (s}, 181.3 {s), 194.5 (s).
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