SYNTHESES AND CHEMICAL PROPERTIES OF SULFOXIDES, SULFILIMINES AND SULFOXIMINES CONTAINING PYRIDINE NUCLEI

Naomichi Furukawa, Fujio Takahashi, Keiko Kishimoto, Hiroyuki Morita, and Shigeru Oae Department of Chemistry, University of Tsukuba, Sakura-mura, Niihari-gun, Ibaraki 305, Japan

Several 2-pyridyl sulfides, sulfoxides and N-(p-toluenesulfonyl)sulfilimines were prepared by the usual methods. Hydrolysis of N-(p-toluenesulfonyl)-2-pyridyl-o-tolylsulfilimine with conc. sulfuric acid gave the corresponding N-unsubstituted (free) sulfilimine in a moderate yield. Sulfoximines were obtained by oxidation of the corresponding free sulfilimines derived from the aminosulfonium salts. These free sulfilimines and sulfoximines thus prepared were found to give adducts with few Cu-salts. Methyl 2-pyridyl sulfoxide was found to be a good phase transfer catalyst for some typical nucleophilic reactions.

Recently, we found that sulfoximines have strong affinities toward several alkali metal salts.¹ When dimethylsulfoximine was used as solvent in S_N2 and E2 reactions, large rate enhancements were observed like those in common polar aprotic solvents such as DMSO and DMF.² The large rate enhancements appear to be due to the increased reactivity of the nucleophilic anion, substantially liberated by chelation of the gegen metal cation by both imino nitrogen and oxygen atoms of the sulfoximine. A remarkable rate-enhancement was observed in the reaction of the sulfoximine. A remarkable rate-enhancement was observed in the reaction of the sulfoximine with dichlorocarbene generated in situ from chloroform and sodium hydroxide in the sulfoximine.³ Meawhile, we found that a new adduct is formed between sulfoximines and Cu-salts. The affinity of sulfilimine or sulfoximine toward heavy metal cations will be increased further by substitution of one of alkyl or aryl groups with pyridine nuclei. Thus we have prepared several sulfoxides, sulfilimines and sulfoximines containing pyridine nuclei and explored their characteristic properties and applications for organic reactions.

Several 2-pyridyl sulfides and sulfoxides were prepared according to the general

-1273 -

procedures.⁴ Methyl 2-pyridyl sulfoxide has a strong affinity toward alkali metal cations and hence enhances the nucleophilic reactivity of the gegen anion. Actually, nucleophilic substitution of benzyl bromide with lithium chloride (Finkelstein Reaction) proceeds smoothly in benzene (liquid-solid phase) or benzene-water (liquid-liquid phase) solvent in the presence of a catalytic amount of this sulfoxide. A few other S_N^2 type reactions were also found to proceed in benzene or benzene-water solvent in the presence of the sulfoxide. Thus, methyl 2-pyridyl sulfoxide can be employed as a phase tansfer catalyst in two phase-heterogeneous reactions.⁵

Several N-(p-toluenesulfonyl)alkyl-2-pyridylsulfilimines were also prepared by our general procedure.⁶ The alkyl-2-pyridylsulfilimines were afforded in moderate yields together with the corresponding sulfoxides. The products obtained were identified by spectroscopic and elemental analyses. Their yields, mps, ir and nmr spectra are summarized in Table I. The absorption bands of ir spectra of the S-N bonds of these 2-pyridylsulfilimines were found to be identical to those of the general alkylaryl- or diarylsulfilimines.⁶

Table I The Yields, Mps, Ir and Nmr Spectra of 2-Pyridylsulfilimines

Q_s-R

◆ NX							
R	х	Yields (%)	Mp (°C)	Ir (S=N)	Nmr (δ-values, ppm) *		
сн ₃	Ts	31	126-127	955	2.40 (s, 3H, p-CH ₃), 2.99 (s,3H, S-CH ₃),		
					7.10-8.72 (m, 8H, Ar-H)		
сн ₂ сн ₃	Ts	37	91-92	980	1.19 (t, 3H, J=7.1 Hz, CH ₃), 2.40 (s, 3H,		
					p-CH ₃), 3.28 (m, 2H, CH ₂), 7.14-8.73 (m,		
a 11					8H, Ar-H)		
СН Сн3	Ts	46	92-93	1000	1.05, 1.26 (dd, 6H, J=6.7 Hz, CH ₃), 2.38		
Сн 3					(s, 3H, p-CH ₃), 3.70 (sept, 1H, J=6.7 Hz,		
					CH), 7.13-8.70 (m, 8H, Ar-H)		
^{сн₂с₆н₅}	Ts	25	124-125	960	2.34 (s, 3H, p-CH ₃), 4.28, 465 (dd, 2H,		
					J=13.4 Hz, CH ₂), 6.95-8.75 (m, 13H, Ar-H)		
o-CH3C6H	4 ^{TS}	44	111-112	970	2.33 (s, 3H, p-CH ₃), 2.55 (s, 3H, o-CH ₃),		
					7.00-8.69 (m, 12H, Ar-H)		

$$\begin{array}{c} \bigcirc \mathbf{N} \mathbf{S} - \mathbf{CH}_{3} & 27 & 180 - 181 & 925 & 2.40 \, (\text{s}, 3\text{H}, \text{p} - \text{CH}_{3}) \, , \, 3.10 \, (\text{s}, 3\text{H}, \text{S} - \text{CH}_{3}) \, , \\ \downarrow & \mathbf{NTS} & (\text{decomp}) & 7.15 - 8.35 \, (\text{m}, 8\text{H}, \text{Ar} - \text{H}) \\ \mathbf{0} - \mathbf{CH}_{3}\mathbf{C}_{6}\mathbf{H}_{4} \, \mathbf{H} \, 64 & 61.5 - 63 & 925 & 2.52 \, (\text{s}, 1\text{H}, \text{NH}) \, , \, 2.58 \, (\text{s}, 3\text{H}, \text{o} - \text{CH}_{3}) \, , \\ & 3150 \, (\text{NH}) & 7.13 - 8.59 \, (\text{m}, 8\text{H}, \text{Ar} - \text{H}) \end{array}$$

* In CDCl₂at 35°C.

Though the hydrolysis of N-(p-toluenesulfonyl)methyl-2-pyridylsulfilimine in conc. sulfuric acid afforded the corresponding sulfoxide because of the instability of the free sulfilimine, similar treatment of N-(p-toluenesulfonyl)-2-pyridyl-0-tolylsulfilimine afforded the corresponding free sulfilimine in 64% yield which gave an adduct with cupric chloride.

Though a few general methods⁷ to prepare the sulfoximine were applied unsuccessfully with the 2-pyridyl sulfoxides, the best preparative method of the sulfoximines containing pyridine nuclei is the in situ oxidation of the corresponding free sulfilimines with such a peracid as MCPBA without isolation.

$$\begin{array}{c} & & & \\ &$$

The free sulfilimines were obtained by treating with ammonia at a low temperature 2-pyridylaminosulfonium salts formed in the reaction of the sulfide with Omesitylenesulfonylhydroxylamine (MSH).⁸ The various 2-pyridylaminosulfonium salts were thus prepared by the reaction of the corresponding sulfides with MSH. The products obtained were identified by spectroscopic and elemental analyses. Amino compounds containing a sulfide linkage was already reported to react with MSH at nitrogen atom but not at sulfur and hence there was no formation of the corresponding aminosulfonium salt.⁹ The reactions of several pyridine derivatives and MSH were also reported to complete easily under very mild conditions.¹⁰ In the reactions of alkyl 2-pyridyl sulfides of lower alkyl homologs, e.g., methyl, ethyl, and isopropyl derivatives, the corresponding aminosulfonium salts were undoubtedly obtained since the ¹H-nmr spectra of α -protons which are adjacent to the sulfur atom shifted toward the lower fields than that of the sulfides. The results are summarized in Table II together with their yields and mps.

Table II	The Yields, M	p and Nmr Spectra of 2-Pyridylaminosulfonium Salts
R	Yield Mp (%) (°C)	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} CH_{3} \\ H_{2} \end{array} \end{array} \\ \begin{array}{c} CH_{3} \\ MH_{2} \end{array} \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \end{array} \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \end{array} \\ \end{array} \\ \begin{array}{c} CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \end{array} \\ \end{array} \\ \begin{array}{c} CH_{3} \end{array} \\ \begin{array}{c} CH_{3} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} CH_{3} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \end{array} \\ \begin{array}{c} CH_{3} \end{array} \\ \end{array}
сн ₃	80 94-95	2.29 (s, 3H, p-CH ₃), 2.48 (s, 6H, o-CH ₃), 333 (s, 3H,
		$S-CH_3$, 6.72 (s, 2H, C_6H_2), 6.90-7.16 (brs, 2H, NH_2),
		7.12-8.56 (m, 4H, C ₅ H ₄ N)
сн ₂ сн ₃	67 118-119	1.41 (t, 3H, J=7.2 Hz, CH ₃), 2.19 (s, 3H, p-CH ₃), 2.53
		(s, 6H, o-CH ₃), 3.66 (m, 2H, CH ₂), 6.63-6.78 (br.s, 2H
		C ₆ H ₂), 6.93-7.16 (br.s, 2H, NH ₂), 7.33-8.63 (m, 4H,
CU		C ₅ H ₄ N)
Сн Сн З	75 93-94	1.36 (t, 6H, J=6.5 Hz, CH ₃), 2.20 (s, 3H, p-CH ₃), 2.58
^{сп} 3		(s, 6H, o-CH ₃), 3.97 (sept, 1H, J=6.5 Hz, CH), 6.68-
		6.78 (br.s, 2H, C ₆ H ₂), 6.88-7.10 (br.s, 2H, NH ₂), 7.49
		-8.66 (m, 4H, C ₅ H ₄ N)
^{CH} 2 ^C 6 ^H 5	68 unstable	2.18 (s, 3H, p-CH ₃), 2.44 (s, 6H, o-CH ₃), 4.90, 497
		(dd, 2H, J=13.4 Hz, CH ₂), 6.56-6.75 (br. s,2H, C ₆ H ₂),
au		6.91-8.55 (m, 11H, NH ₂ , C ₆ H ₅ , C ₅ H ₄ N)
сн Сп 3	52	unstable
°6 [™] 5		
CH ₂ (N)	88	unstable

$\hat{\Box}$	52 159-161 (decomp.)	0.74-2.13 (m, 18H, Alkyl), 2.19 (s, 3H, p-CH ₃), 2.61
X		(s, 6H, o-CH ₃), 3.90 (m, 1H, S-CH), 6.78 (br.s, 2H,
	79 155-156*	C_6H_2 , 7.25-8.20 (m, NH ₂ , C_5H_4N) * 2.04 (s, 3H, p-CH ₃), 2.35 (s, 6H, o-CH ₃), 3.26 (s, 3H,
U-ş-cı	^H 3	S-CH ₃), 6.64 (br.s, 2H, C ₆ H ₂), 6.75 (br.s, 2H, NH ₂),
^{NH} 2		7.55-8.58 (m, 4H, C ₅ H ₄ N)
*In CDCl ₃	at 35°C. **	In DMSO-d ₆ . ***[α] _D ^{25°} =+41.7°(c 2.130 chloroform)

Since aminosulfonium salts of benzyl, l-phenylethyl 2-pyridyl sulfides and bis(2-pyridylthio)methane were found to be unstable, their accurate nmr spectra were not measured. 2-Pyridylsulfoximines thus prepared in moderate yields were methyl, ethyl, and isopropyl derivatives, respectively. The products obtained were identified by their spectroscopic and elemental analyses. The results are summarized in Table III.

Table III The Yields, Mp, Ir and Nmr Spectra of 2-Pyridylsulfoximines

R	Yiel (%)	d Mp (°C)	Ir (C=S=N)	(NH))	Nmr (δ-values, ppm)
CH ₃	65	64.5-66	1010	3250	2.80 (br.s, l E, NH), 3.28 (s, 3H, CH $_3$),
			1225		7.40-8.87 (m, 4H, C ₅ H ₄ N)
^{СН} 2 ^{СН} 3	43	* *	990	3300	1.29 (t, 3H, J=7.2 Hz, CH_3), 2.95 (s, 1H, NH)
₽°₽			1210		3.47 (m, 2H, CH_2), 7.38-8.90 (m, 4H, C_5H_4N)
CH	³ 36	65-66.5	950	3250	1.30, 1.36 (dd, 6H, J=7.2 Hz, CH),7.48-8.88(
ÇII	3				m, 4H, C ₅ H ₄ N)

* In CDCL, at 35°C. ** Oil.

The chemical shifts of α - and β -protons of these sulfoxides, sulfilimines and sulfoximines appeared at higher fields as compared with those of the sulfides. These seem to be due to the anisotropic effects of pyridine ring or S-O, S-N bonds.¹¹

The ir absorption band of the S-N bond of the adduct of 2-pyridyl-o-tolylsulfilimine with cupric chloride (mp, 185-192°C) was found to have a lower wave number, v_{SN} =900 cm⁻¹, as compared to that of the sulfilimine, v_{SN} =930 cm⁻¹. Furthermore, methyl 2-pyridyl sulfoximine afforded also a 1:1 adduct with cupric chloride, mp, 181-182°C. Anal. Calcd. for $C_6H_8Cl_2NOSCu$; C, 24.79, H,2.77, N, 9.46; Found, C, 25.33, H, 3.33, N, 9.39, ir(cm⁻¹ KBr); 1230, 1090, 1015(O=S=N). These results indicate that the basic nitrogen atoms of the sulfilimine and the sulfoximine form a rather strong chelation with copper atom. Thus, the structures of the adducts with cupric chloride may be formulated as shown below.

 $\bigcirc_{\substack{N-\S-tol-o}} \bigcirc_{\substack{N-\S-CH_3\\+2\downarrow \dots NH}} \bigcirc_{\substack{N-\clubsuit{NH}3\\+2\downarrow \dots NH}3} \bigcirc_{\substack{N-\clubsuit{NH}3\\+2\downarrow \dots NH}3} \bigcirc_{\substack{N-\clubsuit{NH}3\\+2\downarrow \dots NH}3} \bigcirc_{\substack{N-\clubsuit3\\+2\downarrow \dots NH}3} \bigcirc$

REFERENCES

- 1) N.Furukawa, F. Takahashi, T. Yoshimura, and S. Oae, Tetrahedron Lett., 3633 (1977).
- 2) Idem., Chem. Lett., 1359 (1977).
- 3) Idem., Tetrahedron , 35, 317 (1979).
- 4) R. Lawrence and E. S. Waight, J. Chem. Soc., B, 1 (1968). J. J. D'Amica,
 U. S. 3295946, Jan. 3, 1967. W. E. Stewart and T. H. Siddall, J. Phys. Chem.,
 <u>74</u>, 2027 (1970). T. Mukaiyama, S. Ikeda, and S. Kobayashi, Chem. Lett., 1159 (1975). R. E. Kohrman, D. X. West, and M. A. Little, J. Heterocycl. Chem.,
 <u>11</u>, 101 (1974). B. S. Jackson, R. E. Brookes, J. E. Graham, W. A. Cummings,
 D. Greenwood, and H. A. Stevenson, J. Sci. Food Agr., <u>8</u>, 31 (1957). C. K.
 Bradsher, L. D. Quinn, R. E. LeBeleu, and J. W. McDonald, J. Org. Chem., <u>26</u>, 4644 (1961). G. B. Barlin and W. V. Brown, J. Chem. Soc., B, 1435 (1968).
 W. Walter, J. Voss, and J. Curts, Ann. Chem., 695 (1966).
- 5) Mikolajczyk et al. reported that several α-phosphoryl sulfoxides work as phase transfer catalysts for the alkylation of ketones. M.Mikolajzyk, S. Grejszczak, and A. Zataski, Tetrahedron Lett., 3757 (1975).
- K. Tsujihara, N. Furukawa, K. Oae, and S. Oae, Bull. Chem. Soc. Japan, <u>42</u>, 2631 (1969).
- 7) S. Oae, K. Harada, K. Tsujihara, and N. Furukawa, Int. J. Sulfur Chem., Part A, 2, 49 (1972).
- Y. Tamura, J. Minamikawa, K. Sumoto, S. Fujii, and M. Ikeda, J. Org. Chem., <u>38</u>, 1239 (1973).
- 9) Y. Tamura, H. Matsushima, J. Minamikawa, M. Ikeda, and K. Sumoto, Tetrahedron, 31, 3035 (1975).
- 10) Y. Tamura, Y. Miki, Y. Sumida, and M. Ikeda, J. Chem. Soc., Perkin I, 2580 (1973).
- 11) F. Taddei, Boll. Sci. Fac. Chim. Ind. Bologna, Suppl., 23, 273 (1965).

Received, 2nd June, 1980