AN ALTERNATIVE TOTAL SYNTHESIS OF (±)-THIENAMYCIN

 $\textbf{Tetsuji Kametani}^{*}, \ \textbf{Shyh-Pyng Huang, Takayasu Nagahara, and Masataka} \\ \textbf{Ihara}$

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

Abstract — (±)-4 β -(2',2'-Dimethoxyethy1)-3 α -(1' R^*)-p-nitrobenzyloxycarbonyloxyethy1)-2-azetidinone (4) was converted into the thienamycin derivative (2) protected with p-nitobenzyl group, utilizing the carbene insertion reaction and subsequent introduction of the cysteamine moiety developed by the Merck group.

The highly desirable antibiotic activity of thienamycin $(1)^1$, possessing a novel 1-carbapen-2-em structure, has promoted considerable synthetic efforts which have resulted in its total synthesis. $^{2-7}$ We developed an efficient synthesis of β -lactam derivatives, <u>via</u> isoxazolines (3), leading to a formal total synthesis of thienamycin. Recently, the Merck research group announced a chiral total synthesis of the antibiotic which involved a novel and useful formation of the [3.2.0] bicyclic ring system by carbene insertion reaction, followed by introduction of the cysteamine moiety. Since our synthetic intermediate (4) has the following advantages; a hydroxyethyl group at the C_3 position with the correct stereochemical arrangement, and a 2',2'-dimethoxyethyl group at the C_4 position which is readily convertible, <u>via</u> the aldehyde, to the carboxylic acid group, we undertook its conversion to the <u>p</u>-nitrobenzyl-protected thienamycin derivative $(2)^2$ employing the Merck method. Thus we wish to report here an alternative total synthesis of thienamycin which was carried out along these lines.

Hydrolysis of 4^6 with hot aqueous acctic acid, followed by Jones oxidation of the resulting aldehyde at 0° C quantitatively gave the acid (5). After treatment of 5 with N,N'-carbonyldimidazole, the imidazolide formed was reacted with the magnesium salt⁸ of the mono-p-nitrobenzyl ester of malonic acid³ to afford the 6-keto ester (6), v_{max} (CHCl₃) 3420 (NH), 1765, 1750, 1720 cm⁻¹ (C=0); 6 (CDCl₃) 1.42 (3H, d,

J = 6.5 Hz, C_{11} -Me), 3.57 (2H, s, $COCH_2CO_2$). The carbene precursor (7), V_{max} (CHCl $_3$) 2130 cm $^{-1}$ was prepared from 6 in 96 % yield by diazo exchange with p-toluenesulfonyl azide in the presence of triethylamine in acetonitrile at 0°C to room temperature. Decomposition of the diazo ketoester (7) was carried out by refluxing in benzene in the presence of a catalytic amount of rhodium acetate, leading to a quantitative formation of the carbapenam (8), V_{max} (CHCl $_3$) 1770 and 1748 cm $^{-1}$ (CO); 8 (CDCl $_3$) 1.52 (3H, d, J = 6.5 Hz, C_{11} -Me), 4.77 (1H, s, C_{3} -H). On treatment of 8 with diphenyl chlorophosphate in the presence of one mole equivalent of diisopropylethylamine and a catalytic amount of 4-dimethylaminopyridine in acetonitrile 3 at 0°C, followed by addition of diisopropylethylamine and N-(p-nitrobenzyloxycarbonyl)-cysteamine and stirring overnight at -15°C, the protected thienamycin derivative (2) was obtained in 70 % yield. The synthetic product (2) was identical to an authentic sample by comparison of the ir and nmr spectra and tlc behaviors.

ACKNOWLEDGEMENTS

We are grateful to Dr. B. G. Christensen of Merck Sharp & Dohme Research Laboratories for a generous gift of the compound (2) and for making unpublished results available to us.

$$(1) R^{1} = R^{2} = H$$

$$(2) R^{1} = CO_{2}PNB, R^{2} = PNB$$

$$PNB = P-Nitrobenzy1$$

$$(3)$$

$$R = Me \text{ or } ^{t}BU$$

$$(3)$$

$$R = Me \text{ or } ^{t}BU$$

$$(4)$$

$$(5)$$

$$(6)$$

$$(6)$$

$$(7)$$

$$(8)$$

$$(8)$$

REFERENCES AND NOTES

- (1) G. Albers-Schönberg, B. H. Arison, O. D. Hensens, J. Hirshfield, K. Hoogsteen, E. A. Kaczka, R. E. Rhodes, J. S. Kahan, F. M. Kahan, R. W. Ratcliffe, E. Walton, L. J. Ruswinkle, R. B. Morisn, and B. G. Christensen, J. Amer. Chem. Soc., 1978, 100, 6491.
- (2) D. B. R. Johnston, S. M. Schmitt, F. A. Bouffard, and B. G. Christensen, J. Amer. Chem. Soc., 1978, 100, 313; J. Org. Chem., 1980, 45, 1130, 1135 and 1142.
- (3) T. N. Salzmann, R. W. Ratcliffe, B. G. Christensen, F. A. Bouffard, <u>Proc. Roy.</u> Soc. (London), in the press.
- (4) R. W. Ratcliffe, T. N. Salzmann, and B. G. Christensen, <u>Tetrahedron Letters</u>, 1980, 21, 31.
- (5) Synthesis of carbapenem derivatives; L. D. Cama and B. G. Christensen, J. Amer. Chem. Soc., 1978, 100, 8006; R. J. Ponsfred, P. M. Roberts, and R. Southgate, J. C. S. Chem. Comm., 1979, 847; A. J. G. Baxter, K. H. Dickinson, P. M. Roberts, T. C. Smale, and R. Southgate, J. C. S. Chem. Comm., 1979, 236; J. H. Bateson, P. M. Roberts, T. C. Smale, and R. Southgate, J. C. S. Chem. Comm. 1980, 185; H. Onoue, M. Narisada, S. Uyeo, H. Matsumura, K. Okada, T. Yano, and W. Nagata, Tetrahedron Letters, 1979, 3867.
- (6) T. Kametani, S.-P. Huang, and M. Ihara, Heterocycles, 1979, 12, 1183 and 1189; T. Kametani, S.-P. Huang, Y. Suzuki, S. Yokohama, and M. Ihara, Heterocycles, 1979, 1301; T. Kametani, S.-P. Huang, S. Yokohama, Y. Suzuki, M. Ihara, J. Amer. Chem. Soc., 1980, 102, 2060.
- (7) T. Kametani, T. Nagahara, Y. Suzuki, S. Yokohama, S.-P. Huang, and M. Ihara, Heterocycles, 1980, 14, 403.
- (8) D. W. Broocks, L. D.-D. Lu, and S. Masamune, Angew. Chem. Int. Ed. Engl., 1979, 18, 72.

Received, 19th June, 1980