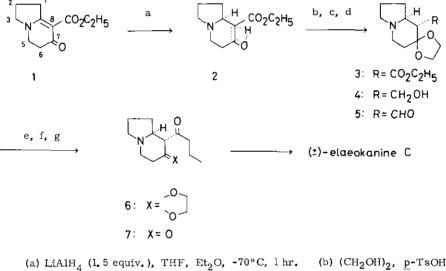

ELAEOCARPUS ALKALOIDS. THE SYNTHESIS OF (\pm) -ELAEOKANINE A, (\pm) -ELAEOKANINE B, AND (\pm) -ELAEOKANINE C

Toshio Watanabe,* Yoshihiko Nakashita, Sadamu Katayama, and Masashige Yamauchi

Faculty of Pharmaceutical Sciences, Josai University, 1-1, Keyakidai, Sakado, Saitama 350-02, Japan

<u>Abstract</u>---The synthesis of (±)-elaeokanines A, B and C by using compound 2 as an intermediate is described.

The <u>Elaeocarpus</u> alkaloids have been isolated by Johns <u>et al.</u> from the leaves of <u>Elaeocarpus</u> species (family Elaeocarpaceae), rain-forest trees which flourish in New Guinea and India.²⁾ All these alkaloids contain the characteristic <u>trans</u>-indolizidine ring system.

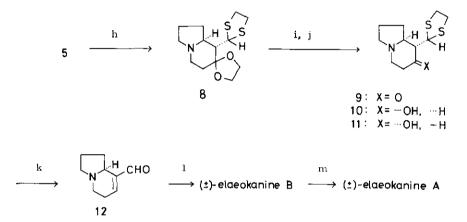

elaeokanine A

elaeokanine B

elaeokanine C

Several synthetic methods for indolizidine derivatives have been reported, ³⁾ but these seem inconvenient for <u>Elaeocarpus</u> alkaloids synthesis for lack of suitable functionality and instability of indolizidine ring for various reagents. For example, Johns <u>et al.</u> reported that the <u>trans</u>-indolizidine ring in <u>Elaeocarpus</u> alkaloids was easily cleaved when these alkaloids were treated with an acylating agent^{la)} and the acylation of the enolate anion of 7-oxoindolizidine did not give the desired acylated products with the only exception by 2-methyl-6-methoxybenzoyl cyanide. ⁴⁾ We developed the synthetic methods of indolizidine derivatives which contained the appropriate functional groups at the C-7 and C-8 positions⁵⁾ and planned to synthesize the title compounds, ⁶⁾ as shown in Schemes I and II, which were isolated from Elaeocarpus kaniensis Schltr. in 1972. ^{1d}

Recently, Trost <u>et al</u>, reported the synthesis of quinolizidine derivatives from iminoethers and α , β -unsaturated ketones.⁷⁾ Extension of this method to 2-ethoxy-l-pyrroline and ethyl 3-oxo-pentenoate gave the compound 1 in 80% yield [mp. 70.5-71° C; m/e 209(M⁺); $v \frac{\text{CHCl}_3}{\text{max}}$ 1710, 1665, 1640, 1560 cm⁻¹; & 4.22 (2H, quar, J=7.1 Hz, -COOCH₂-CH₃), 3.59 (2H, t, J=7.8 Hz, C₃-H), 3.55 (2H, t, J=7.8 Hz, C₅-H), 3.27 (2H, t, J=7.8 Hz, C₁-H), 2.59 (2H, t, J=7.8 Hz, C₆-H), 2.13 (2H, quin, J=7.8 Hz, C₂-H), 1.31 (3H, t, J=7.1 Hz, -COOCH₂-CH₃)]. Selective reduction of 1 with LiAlH₄ gave the trans-indolizidine 2 in 90% yield [the picrate, mp. 173.5-174.5°C;⁸) m/e 211 (M⁺); $v \frac{\text{CCl}_4}{\text{max}}$ 3445, 2800-2600 (Bohlmann band), 1740, 1720, 1650, 1615 cm⁻¹]. The compound 2 is one of the versatile intermediates for the synthesis of Elaeocarpus alkaloids⁹ and we synthesized (±)-elaeokanine C as shown in Scheme I by using 2 as a starting material.



(a) $LiAIH_4$ (1.5 equiv.), THF, Et_2O , -70°C, THF. (b) (CH_2OH_2 , <u>p</u>-1SOH (1.5 equiv.), benzene, 72 hr. (c) $LiAlH_4$ (1.5 equiv.), THF, Et_2O , reflux 3 hr. (d) NCS, DMS, toluene, CH_2Cl_2 , -25°C, 2.5 hr. (e) <u>n</u>-PrMgBr (5.0 equiv.), THF, Et_2O , reflux 3 hr. (f) Jones oxid.. (g) 47% aq. HBr, room temperature, 3 hr.

Scheme I

The LiAlH₄ reduction of $\frac{3}{2}$, which was obtained in 90% yield from $\frac{2}{2}$ by treatment with ethylene glycol, gave the alcohol $\frac{4}{2}$ in 90% yield [mp. 92-93°C; m/e 213 (M⁺); $v \frac{\text{CCl}_4}{\text{max}}$ 3550 cm⁻¹; δ 3.83 (lH, dd, J=11.5 Hz, J=3.0 Hz), 3.66 (lH, dd, J=11.5 Hz, J=5.0 Hz), both signals are assigned to $-\text{CH}_2\text{OH}$]. Oxidation of $\frac{4}{2}$ with NCS-DMS gave the aldehyde $\frac{5}{2}$ in 95% yield [m/e 211 (M⁺); $v \frac{\text{CCl}_4}{\text{max}}$ 1730 cm⁻¹; δ 9.78 (lH, d, J=1.0 Hz, -CHO)]. The Grignard reaction of $\frac{5}{2}$ with <u>n</u>-PrMgBr followed by the Jones oxidation gave the ketone $\frac{6}{2}$ in 80% yield from $\frac{4}{2}$

[the picrate, mp. 162.5-163.5°C; m/e 253 (M⁺); $v \frac{\text{CCl}_{4}}{\text{max}}$ 1715 cm⁻¹]. Hydrolysis of the ethylene ketal in $\frac{6}{2}$ was furnished by treatment with 47% aq. HBr for 3 hr at room temperature and gave 7 in 70% yield, whose spectral data [$v \frac{\text{CCl}_{4}}{\text{max}}$ 1720-1680 cm⁻¹ (broad); $\lambda \frac{\text{EtOH}}{\text{max}}$ 295 nm (ε 2860) shifted to $\lambda \frac{\text{EtOH}}{\text{max}}$ 308 nm (ε 13200) on addition of NaOH] were identical with those reported by Johns <u>et al.</u>.^{1d)} The synthesis of 7, which was already converted into (±)elaeokanine C, thus constitutes a formal synthesis of (±)-elaeokanine C.

(h) $(CH_2SH)_2$ (2.0 equiv.), BF_3 - Et_2O (l. 3 equiv.), CH_3COOH , room temperature, 48 hr. (i) 47% aq. HBr, room temperature, 24 hr. (j) LiAlH₄ (l.2 equiv.), THF, Et_2O , reflux 3 hr. (k) MeI, THF, MeCN, HCl, reflux 48 hr. (l) n-PrMgBr (5.0 equiv.), THF, Et_2O , reflux 3 hr. (m) Jones oxid.

Scheme II

(±)-Elaeokanines A and B were synthesized as shown in Scheme II. Treatment of the aldehyde 5 with $(CH_2SH)_2/BF_3$ -etherate gave 8 in 95% yield $[m/e\ 283\ (M^+);\ 6\ 4.92\ (lH, s, <math>SS_{H^+},\ 3.30-3.13\ (4H,\ m,\ -OCH_2CH_2O^-)]$. Hydrolysis of the ethylene ketal in 8 with 47% HBr gave the ketone 9 in 90% yield $[m/e\ 243\ (M^+);\ 6\ 4.95\ (lH,\ d,\ J=5.0\ Hz,\ SS_{H^+})]$. Reduction of 9 with LiAlH₄ gave a mixture of isomeric alcohols $10\ [mp.\ 101-102^\circ C;\ m/e\ 245\ (M^+);\ v\frac{CCl_4}{max}\ 3480\ cm^{-1};\ 6\ 4.90\ (lH,\ s,\ SS_{H^+}),\ 4.20-3.70\ (lH,\ m,\ C_7-H)]\ and <math>11\ (mp.\ 103-104\ ^\circC;\ m/e\ 245\ (M^+);\ v\frac{CCl_4}{max}\ 3480\ cm^{-1};\ 6\ 4.71\ (lH,\ d,\ J=6.0\ Hz,\ SS_{H^+}),\ 4.60-4.30\ (lH,\ m,\ C_7-H)]\ in a\ ratio\ of\ 3:2\ in\ 93\%\ yield.$ Treatment of the mixture of the alcohols $10\ and\ 11\ with\ MeI\ gave\ 12\ which was\ used without\ further\ purification\ in\ the\ next\ step\ since\ it\ decomposed\ on\ standing\ in\ air.$ The Grignard reaction of the aldehyde $12\ gave\ (\pm)$ -elaeokanine

B in 70% yield from the mixture of 10 and 11 $[m/e 195 (M^+); v \frac{CCl_4}{max} 3150 \text{ cm}^{-1}; \delta 5.66 (1H, m),$ 4.04 (1H, m), 0.91 (3H, t, J=7.0 Hz)]. Oxidation of (±)-elaeokanine B with the Jones reagent gave (±)-elaeokanine A in 80% yield [the picrate, mp. 139.5-140.5°C; m/e 193 (M⁺); $v \frac{CCl_4}{max}$ 1670, 1630 cm⁻¹; $\lambda \frac{\text{EtOH}}{max}$ 229 nm (ε 9800); δ 6.87 (1H, m), 3.50 (1H, m), 2.62 (1H, t, J=7.0 Hz)]. The spectral data of synthesized elaeokanines are identical with those of the natural products.

<u>Acknowledgement</u> We are indebted to Dr. J. A. Lamberton (CSIRO, Melbourne) for the gift of the NMR and IR spectra of natural elaeokanine A and the NMR spectrum of natural elaeokanine B. We also thank Prof. Y. Morita of Josai University for his profitable advice and encouragement throughout this work.

References and Notes

The NMR spectral data of compounds $l_{,4}$, and (\pm) -elaeokanines A and B were taken at 100 MHz and those of other compounds were measured at 60 MHz in $CDCl_3$ using TMS as the internal standard.

- (a). S. R. Johns, J. A. Lamberton, A. A. Sioumis, and R. I. Willing, <u>Aust. J. Chem.</u>, 1969, 22, 775; (b). S. R. Johns, J. A. Lamberton, and A. A. Sioumis, <u>ibid.</u>, 1969, 22, 793; (c). S. R. Johns, J. A. Lamberton, A. A. Sioumis, H. Suares, and R. I. Willing, <u>ibid.</u>, 1971, 24, 1679; (d). N. K. Hart, S. R. Johns, and J. A. Lamberton, <u>ibid.</u>, 1972, 25, 817.
- (a). A. K. Barua, C. Dasgupta, S. Chakravarti, M. K. Choudhury, and A. Ghosh, J. <u>Indian Chem. Soc.</u>, 1976, <u>53</u>, 531; (b). A. B. Ray, L. Chand, and V. B. Pandey, <u>Phytochemistry</u>, 1979, <u>18</u>, 700.
- (a). F. Lions and A. M. Willison, J. Proc. Roy. Soc. N. S. Wales, 1940, 73, 240 [Chem. Abstr., 1940, 34, 5841⁴]; (b). N. J. Leonard, S. Swann, Jr., and J. Figueras, Jr., J. Am. Chem. Soc., 1952, 74, 4620; (c). A. H. Beckett, R. G. Lingard, and A. E. E. Theobald, J. Med. Chem., 1969, 12, 563.
- 4. A. S. Howard, C. A. Meerholz, and J. P. Michael, Tetrahedron Letters, 1979, 1339.
- 5. Compound (i) was prepared by the condensation of 1-pyrroline and methyl 2, 4-pentadienoate in 30% yield (T. Watanabe, Y. Nakashita, S. Katayama,

in 30% yield (T. Watanabe, Y. Nakashita, S. Katayama, and M. Yamauchi, unpublished result). This compound seems most versatile for the synthesis of <u>Elaeocarpus</u> alkaloids, but is far unstable for further reactions.

- 6. (a). J. J. Tufariello and Sk. A. Ali, <u>Tetrahedron Letters</u>, <u>1979</u>, 4445; (b). A. S. Haward, G. C. Gerrans, and C. A. Meerholz, <u>ibid.</u>, 1980, <u>21</u>, 1373 have recently described the synthesis of (±)-elaeokanines A, B, and C.
- 7. B. M. Trost and R. A. Kunz, J. Am. Chem. Soc., 1975, 97, 7152.
- Lions and Willison (ref. 3a) reported that they obtained 6- or 8-ethoxycarbonyl-7-oxoindolizidine and its mp. was 137°C. We have found the reported compound is actually 6-ethoxycarbonyl-7-oxo-indolizidine and unsuitable for the synthesis of Elaeocarpus alkaloids.
- 9. The synthesis of other Elaeocarpus alkaloids is now in progress.

Received, 5th June, 1980