A NOVEL SYNTHESIS OF (+)-FUMARICINE

Miyoji Hanaoka,^{*} Shingo Yasuda, Yuriko Hirai, Kazuyoshi Nagami, and Takeshi Imanishi Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa, 920, Japan

Abstract — A novel synthesis of (\pm) -fumaricine $(\frac{5}{2})$ from the phenolbetaine $(\frac{5}{2})$ via the 8,14-cycloberbine $(\frac{6}{2})$, the photochemical valence tautomer of $\frac{5}{2}$, is described.

Previously, we reported a novel method for a synthesis of the spirobenzylisoquinoline (3) from berberinephenolbetaine (1) by photochemical valence tautomerization and subsequent regioselective C_8 -N bond cleavage of the valence tautomer, the 8,14-cycloberbine (2).¹⁾ This communication deals with the first application of this method to a novel synthesis of a spirobenzylisoquinoline alkaloid, (±)-fumaricine (2).²⁾

Oxidation of the dehydroberbine $(4)^{3}$ with m-chloroperbenzoic acid in CH_2Cl_2 in a stream of N₂ at -20 \vee -30° gave the phenolbetaine (5) [69%, mp 142-143°, δ^{4} 9.15 (1H, s, H-8), 7.36 (1H, s, H-1), 7.05 (2H, s, H-9 and H-10), 6.48 (1H, s, H-4)]. Irradiation (100W high pressure Hg lump, with Pyrex filter) of 5 in MeOH in a stream of N₂ for 1.5 hr at room temperature effected valence tautomerization leading to the 8,14-cycloberbine (§) [36%, ν^{4}) 1710, δ 3.78 (1H, s, H-8)]. Regioselective C₈-N bond cleavage of § with ClCO₂Et afforded the spirobenzylisoquinoline (7) [65%, mp 110-111°, m/e: 459, 461 (M⁺), ν 1730, 1680, δ 7.06 (2H, s, H-11 and H-12), 6.58 (1H, s, H-4), 6.11 (1H, s, H-1), 5.91 (1H, s, H-13)], which was hydrogenolyzed over 5% Pd-C to give the dechlorination product (§) in 90% yield. Reduction of § with $\text{LiAlh}_4^{(5)}$ in THF afforded (±)-fumaricine (§) [37%, mp 148-150° (lit.²⁾ mp 147.5-149°), m/e: 369 (M⁺), v 3550, & 6.67 (2H, s, H-11 and H-12), 6.54 (lH, s, H-4), 6.35 (lH, s, H-1), 5.88 (2H, s, OCH₂O), 5.40 (lH, s, H-8), 3.79 (3H, s, OCH₃), 3.48 (3H, s, OCH₃), 3.28 (2H, s, H-13), 2.39 (3H, s, N-CH₃)], which was proved to be identical with the authentic sample of (±)fumaricine by IR and NMR spectra. The present synthesis will provide a general synthetic method for the spirobenzylisoquinoline alkaloids.

Acknowledgement: The authors are grateful to Professor H. Irie, Kyoto University, for sending the IR and NMR spectra of (\pm) -fumaricine.

REFERENCES AND FOOTNOTES

- M. Hanaoka, S. Yasuda, K. Nagami, K. Okajima, and T. Imanishi, Tetrahedron Letters, 1979, 3749.
- A synthesis of (<u>+</u>)-fumaricine has been accomplished; T. Kishimoto and S. Uyeo, J. Chem. Soc. (C), 1969, 2600.
- 3. The synthesis of 4 will be described in a future paper.
- All IR and NMR spectra were measured in CHCl₃ and CDCl₃, respectively.
- 5. Hydrogenation of 2 over 5% Pd-C followed by LiAlH_4 reduction⁶ gave stereoselectively the alcohol (a), while the diastereoisomeric alcohol (b) was stereoselectively derived from 2 by the following reaction sequence; i) NaBH₄, ii) ClCO₂Et, iii) H₂/Pd-C, iv) LiAlH₄.
- cf. H. Irie, S. Tani, and H. Yamane, J. Chem. Soc. Perkin I, 1972, 2986.

Received, 30th June, 1980