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Electroorganic syntheses in the field of nitrogen heterocycles1 reveal an in-
teresting synthetic alternative to the purely chemical approach due to the fact
that new and unexpected structures could be cbtained under relatively mild condi-
tions. The most obvious advantage of the electrolytic method is seen in the possi-
bility of contrelling over a wide range the activity of the reagent, the electron,
by proper choice of the electrode potential. Another advantage includes the trans-
fer of electrons at low temperature and a chosen pH, so that temperature- and
acid- or base-sensitive compounds, such as many biologically active molecules,

can be reduced or oxidized under mild and well-defined conditions.

Our interest in electrochemical reductions of nitrogen-heterocycles traces
back to the fact that the electrolysis of leucopterin [2) in strong acidic solu-
tion lead to isoxanthopterin (l)z, whereas the chemical reduction with sodium

amalgam in basic medium gave 7,8-dihydroxanthepterin [2)3’4.

Systematic electrochemical studies with leucopterin (2) and its 3- and 8-
methyl derivatives over a wide pH-range indicated that there is an interesting
pH-dependence of the reduction process leading to an isoxanthopterin derivative
at low pH and & xanthopterin derivative at higher pHS. Since in both cases 4 elec-
trons are consumed by the substrate we proposed as the important and initial step
of a general mechanism a 2-electron up-take of the electrochemically active 6,7-
dioxadiene system forming an endiol as the most likely first intermediate (4).
This labile compound will then tautomerize according to the pll to two different
covalent hydrates 5 and 6 which after loss of one mol of water to isoxanthoptevin
{1} and xanthopterin (8) will immediately be further rveduced to the corresponding
5,6-(7) and 7,8-dihydro derivatives (3} respectively. On work-up the easily oxi-

dizable 5,6-dihydroisoxanthopterins are converted to the quasi-aromatic analogs
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whereas the more stable 7,8-dihydroxanthopterins could be isolated directly in

this reduction stage.
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In order to prove the generality of this reaction T-methyl-(2) and 3,5,8-

trimethylleucopterin (12) have been treated analogously. Whereas 3 showed between

pH O and 13 only one vreaction product, I-methyl-7,8-dihydroxanthopterin ({10),
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12 did react solely to the other isomer 3,5,8-trimethyl-5,6-dihydroisoxantho-

pterin (13) indicating that additional facters contrcl the reaction pathways.

The structure of 10 was proven by oxidation to 1-methylxanthopterin (]11) and
13 showed an easy air oxidation in acidic medium to the 3,5,8-trimethylisoxantho-

pteridinium cation (]3) which was also obtained by quaternization of 3,8-dimethyl-
isoxanthopterin (14} by methyl iodide showing a characteristic long wave absorp-

tion band at ahout 380 nm.
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Further electrochemical reductions of various 2- and 4-substituted §,7-dioxo-

5,6,7,8-tetrahydropteridines (16-20)°
to be the exception in this series what the pH-dependence is concerned
these compounds react in an identical manmer to 7,8-dihydro derivatives (Z5-

On prescnce cf an N-§ substituent (21-24) the electrochemical reduction

revealed that the lcucopterin case Seems

, since
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after a 2e up-take forming stable pseudo-base-type molecules (30-33) with the

hydroxy-function in 7-position.

The more simpler 2,3-dioxo-1,2,3,4~tetrahydroquinoxaline system (34-38) is
also reduced in acidic medium to the corresponding 2-oxo-1,2,3,4-tetrahydro deri-
vatives (37-39) whereby the eletron consumption is seen in an unusual 4e  reduc-
tion wave on polarographic studies’. The mechanism of this transformation again
will include a 1,2-endiel structure (40) as well as in the N-1 substituted cases
a 1-methyl-2Z-oxo-3,4-dihydroquinoxalinium cation intermediate (41) according to

the following scheme:
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On air oxidation 3§ and 33 are converted back to the starting materials 35
and 36 respectively via an intermediate gquinexalinium cation formation as noticed

from the time-dependent changes of the UV-spectraT.

The above presented heterocyclic compounds have in common that the electro-
active part in these di-amides are bounded by the adjacent carbonyl functions
representing an 1,4-dioxadiene system. Extension of these findings to other 1,4-
diheterodiene combinations in particular in the pteridine field offers therefore
an interesting principle for a bread variety of potentially electrochemically

active pteridine derivatives prone to cathodic reductions.

The electreoactive part in 1,3-dimethyllumazine (42) is localized in the py-

razine moiety of the molecule revealing a 1,4-diazadiene system which is conver-
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ted by a ze /20" reduction step into the correspoending 5,8-dihydro derivative
(43). This form is thermodynamically unstable due to the antiaromatic 8% -charac-
ter and could therefore not be isolated. The formation of the 5,8-dihydropteri-

dine structure as an intermediate was proven however by trapping experiments with

acetic anhydride yielding 5,8-diacetyl-1,3-dimethyl-5,8-dihydrolumazine (44), the
constitution of which has unequivocally been elucidated by an X-ray analysis8
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The initial step in such an electrochemical reduction is in principle a one-
electron transfetr giving rise to a radical anion (45) which could be detected in
the present case by ESR during electrolysis in dry DMF with tetra-n-butylammonium
icdide as electrelyte. 45 is a strong nucleophile reacting with acetic anhydride

to 46 which will accept aneother electron to the en-amide anicn 47 veacting finally
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to the reaction product 44.

The electrochemical reductive acylation process could be applied also to

2,10 such as quinoxalines

pterins (48) as well as to other 1,4-diazine systems
(48), pyride-pyrazines (50) and pyrazines (§51) forming stable 1,4-diacyl-1,4-

dihydro derivatives in high yields.

A practical use of the potential controlled selective reduction can be seen
from the conversion of neopterin (32) to 7,8-dihydroneopterin (53) in 55 % yield
or from the formation of various 7,8-dihydropterins as intermediates in droso-

pterin synthesis]]. The reactions proceed presumably via the 5,8-dihydro deriva-

tives which tautomerize to the thermodynamically more stable 7,8-dihydro isomers.
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Starting from 7-dimethylamino-(54) and 7-hydroxy-1,3-dimethyllumazine (55)
respectively the electrochemical reduction in presence of acetic anhydride takes
place in a similar manner but forming from steric and electrenic reasons only
N-5 monoacetyl derivatives (36, 57) which immediately tautomerize to 5-acetyl-

{
5,6—dihydrolumazines (58, 59).
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extension of the partial reductions to 6-acyllumazines offers a series of
additional possibilities due to the potentially selective reactivity of the built-
in electroactive 1,4-diaza- and 1,4-oxazadiene system respectively in these mole-
cules. 6-Acetyl-7-methyllumazines (§0-82) are electrochemically reduced at pH 5§

in n-propanel/0.3 M KC1 selution to the corresponding 5,8-dihydro devivatives
(63-65) which are stable enough under anaercbic conditions to be isolated due to

the fact that the 6-acyl group counteracts the Sqf -system by its electro-attrac-
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ting power and mesomeric interaction. The long wave absorption band of lox ex-
tinction at 480-490 nm is very charactevistic for such types of compounds12 and

can be regarded as a structural proof.
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Reduction of 60 in acidic medium (0.5 N HCl/n-propancl) lead to 6-acetyl-
1,3,7-trimethyl-7,8-dihydrolumazine {66) may-be by an acid catalysed tautomerism
from £3. Reaction of 60 at pH 7 in formamide and in presence of Robinson-Britton~
puffer afforded a more severe structural change with a mechanistically unknown

ring-contraction to a 8-acetonyl-coffein (67).

Another interesting substrate for electrochemical reducticns was found in
6-benzoyl-1,3-dimethyl-7-phenyllumazine (£8) which showed a series of reactions
depending on the various reaction conditions. At pil 5 again the 5,8-dihydro deri-~

vative (69} is formed wheveas treatment at pH 8 in DMF and ammonium formiate
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soluticn gave rise te a mixture of 70 % of 6-benzoyl-1,3-dimethyl-7-phenyl-5,6-

(20} and 22 % of 7,8-dihydrelumazine {71). If the reduction is performed in n-
propanol /0.3 M KC1 seluticn at pH 8 deacylaticn became the main reaction pathway

a

yielding 73 % of i,3-dimethyl-7-phenyllumazine (72) besides 15 % of 7]1.

This unusual deacylation may be based on a homolytic cleavage reaction of
a radical intermediate or is devrived from the 5,6-~dihydro derivative, the conver-
sion of which to 72 and benzaldehyde could spectrophotometrically be followed at

pH 1 under anaerohic conditions favouring the following mechanism:
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An entirely different reaction pathway took place with 6-acetyl-1,3,7-tri-
methyllumazine (§Q) during cathodic reducticn in n-prepanol/0.3 M KC1 solution

at pH 8-10 forming the threo-pinacol 73 in an cone-electron reduction process and

a highly stereospecific dimerization'® '° in 84 $ yield. 73 of which an X-ray
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analysi516 has proven the structure turned out to be a relatively labile com-
pound presumably due to some internal strain by crowding and its abnormal long

central C-C-bond of 1.589 i,

Treatment of 74 in alcohol in presence of oxygen led back to starting ma-
terial 60 which was furthermore obtained on attempted acetylation with acetic
anhydride. Heating above the melting point effected disproportionation of 74 to

a 1/1-mixture of 60 and 6- (1-hydroxyethyl)-1,3,7~trimethyllumazine (77}.

If 1,3-dimethyllumazine-6-aldehyde (73) is reduced analogously to the
pinacel 75 the internal steric strain obvicusly is minimized to a large extent
since 75 turned out to possess normal stability. Acetylation afforded the di-
acetyl derivative 76 and treatment with 2,2-dimethoxypropane under acid cata-

lysis gave the corresponding isopropylidene derivative 78.

7-Acetyl-1,3~dimethyllumazine {(78) however fermed another labile pinacol

80 indicating a further crowding effect localized at the alcoholic C-atoms.
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Finally we turned our attention also to anodic oxidation precesses and in-
vestigated recently the electrochemical behavicur of Z-thiolumazines in basic
medium. It was found that 6,7-diphenyl-2-thiolumazine {8]) is anodically oxidized
in a 6e -process to 4-oXxo-6,7-diphenyl-3,4-dihydropteridine-2Z-sulfonic acid which
has been isolated as a benzylisothiuronium salt (§2). The same compound could
also chemically be obtained by direct permanganate oxidation or via the corres-

ponding ptervidine-2-sulfinic acid (83) a reaction product of 81 on treatment with

2 mel of dilute hydrogen peroxide.

Further experiments in this field will prove whether selective anodic oxi-
dations will directly lead to disulfides, sulfenic, sulfinic, and sulfonic acids
respectively, which seem to be valuable synthetic intermediates in ptevidine

transformations.
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