
SYNTHESIS OF 2-ARYL-BENZIMIDAZOLES VIA CYCLIC N-DIAZONIUM IONS¹⁾

Richard KREHER^{*)} and Udo BERGMANN Institut für Chemie, Medizinische Hochschule Lübeck, Ratzeburger Allee 160, D-2400 Lübeck

Condensation of 2-azido-aniline with aromatic aldehydes and protonation with tetrafluoroboric acid lead to phenylogous azidoiminium salts. Subsequent cyclisation to cyclic N-diazonium ions and N₂-elimination give rise to the formation of 2-aryl-benzimidazoles. In the same manner 2-azido-N-methylaniline can be converted with aromatic aldehydes through a one step procedure into the corresponding 1-methyl-2-aryl-benzimidazoles. The common reaction principle is the intermediate formation of cyclic N-diazonium salts as precursors for 5-membered heterocycles.

 α, ω -Bifunctional compounds (1) containing both a terminal azido group and an electrophilic centre (E¹ = nitrilium-^{3a)} or E¹ = iminium-group^{3b)}) seemed to be attractive precursors for the generation of cyclic N-diazonium ions (2). Nucleophilic addition of the azido group to the polarized carbon nitrogen multiple bond was expected to be a promising route for the formation of these reactive cationic intermediates (2).

^{*)} c/o: Prof. Dr. Richard Kreher, Institut für Organische Chemie und Biochemie, Technische Hochschule Darmstadt, Petersenstraße 22, D-6100 Darmstadt, Federal Republic of Germany

In order to evaluate the scope of this simple synthetic principle it was tested if the intramolecular reaction of the phenylogous azido-iminium-salts ($\frac{5}{2}$) - via the 5-membered N-diazonium ions ($\frac{6}{2}$) and subsequent N₂-elimination to substituted benzimidazoles ($\frac{7}{2}$) - could be realized. For this end 2-azido-aniline ($\frac{3}{2}$. $\frac{1}{2}$) was condensed with substituted aromatic aldehydes via (r_1). The formed azomethines ($\frac{4}{2}$) are isolable and can be converted by treatment with tetrafluoroboric acid into the reactive azido-iminium-salts ($\frac{5}{2}$. $\frac{1}{2}$).

These cationic intermediates lose nitrogen in the range of 95 - 125 $^{\circ}$ C - depending on the electronic properties of the substituent R' in p-position - giving rise to the formation of 2-aryl-benzimidazoles ($\underline{7},\underline{1}$, cf. table 1). The cyclisation is obviously favored by the nitro group (R' = NO₂). This electron attracting substituent enhances the electrophilic reactivity of the iminium salt ($\underline{5},\underline{1}a$) and increases the tendency for cyclisation through intramolecular addition of the azido group to the polarized CN-double bond. The reverse effect is observed for the methyl group (R' = CH₃) in p-position. The reactivity of the azido-iminium-salt ($\underline{5},\underline{1}c$) is diminished and a higher reaction temperature is afforded for cyclisation.

Table 1: 2-(4'-R'-Aryl) benzimidazoles ($\underline{7},\underline{1}$, R = H) via cyclisation of 2-azido-N-(4'-R'-benzylidene) anilines ($\underline{4}$) in the presence of tetrafluoroboric acid

2-Azido-N-(4'-R'-benzylidene)anilines ($\underline{4},\underline{1}a$) - ($\underline{4},\underline{1}c$) were treated with equimolar amounts of tetrafluoroboric acid in absolute benzonitrile at room temperature. The resulting azido-iminium-salts ($\underline{5},\underline{1}a$) - ($\underline{5},\underline{1}c$) were heated for 30-60 min up to 95 -125 ^oC until N₂-evolution was completed. The formed 2-aryl-benzimidazoles ($\underline{7},\underline{1}$) were isolated by standard procedures (distillation, extraction, crystallization) and characterized by comparison with the authentic materials ⁴.

 $(\underline{7},\underline{1}a)$ R' = NO₂, 60 min/95-100 °C; yield 73 %, mp = 316 - 318 °C. ($\underline{7},\underline{1}b$) R' = Cl, 30 min/110-115 °C; yield 90 %, mp = 295 - 296 °C. ($\underline{7},\underline{1}c$) R' = CH₃, 30 min/120-125 °C; yield 96 %, mp = 276 - 279 °C.

The electrophilic activation of the CN-double bond can also be achieved through N-alkylation. Treatment of the phenylogous azido-azomethines ($\underline{4}$) with methyl tri-fluoromethanesulfonate in 1,2-dichloroethane (5 h/O ^DC) leads to the reactive azido-iminium-salts ($\underline{5},\underline{2}$, R = CH₃) via ($r_{1,2}$). Cyclisation to the 5-membered N-diazonium ions ($\underline{6},\underline{2},$ R = CH₃) and subsequent N₂-elimination is induced by heating at reflux temperature. The anticipated 1-methyl-2-aryl-benzimidazoles ($\underline{7},\underline{2}$) are obtained with yields of 50 %. In this case no significant dependence of the reaction conditions on the substituents could be detected. In a similar manner 1-ethyl-2-aryl-benzimidazoles ($\underline{4}$) with triethyloxonium tetrafluoroborate.

The cyclisation products $(\underline{2},\underline{2})$ independently arise via a two step reaction (r_2/r_3) from 2-azido-N-methyl-aniline $(\underline{3},\underline{2})$ by subsequent treatment with tetrafluoroboric acid and the same aromatic aldehydes (cf. table 2). Under the condensation conditions the initially formed azido-iminium-salts $(\underline{5},\underline{2})$ are not isolable, ring closure to cyclic N-diazonium ions $(\underline{6},\underline{2})$ accompanied by N₂-elimination provides a convincing explanation for the formation of 1-methyl-2-aryl-benzimidazoles.

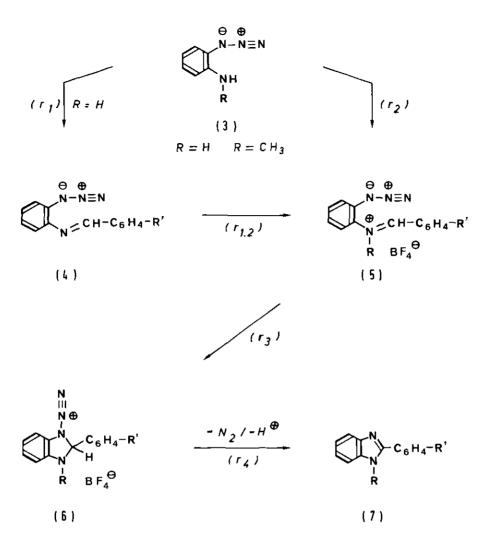


Table 2: 1-Methyl-2-(4'-R'-aryl)benzimidazoles ($\frac{7}{2}$, $\frac{2}{2}$, R = CH₃) via condensation of 2-azido-N-methylaniline ($\frac{3}{2}$, R = CH₃) with aromatic aldehydes and cyclisation in the presence of tetrafluoroboric acid

The tetrafluoroborate of 2-azido-N-methylaniline $(\underline{3},\underline{2}, R = CR_3)$ was refluxed in absolute 1,2-dichloroethane for 6 h with equimolar amounts of aromatic aldehydes and catalytic amounts of triethylamine at a water separator. The reaction mixture was worked up under basic and acidic conditions. The isolated 1-methyl-2-aryl-benzimidazoles $(\underline{7},\underline{2})$ were purified by recristallization from n-hexane/benzene and identified by comparison with the authentic materials 5,6.

The alternative reaction pathways $(r_{1.2})$ and (r_2) independently confirm the formation of the phenylogous azido-iminium-salts $(\underbrace{5}, \underbrace{2}, R = CH_3)$ as precursors for the generation of cyclic N-diazonium ions $(\underbrace{6}, \underbrace{2})$ through intramolecular addition of the azido group to the polarized CN-double bond. The subsequent reactions of the reactive intermediates $(\underbrace{6}, \underbrace{2}) - N_2$ -elimination and deprotonation - proceed spontaneously and do not exhibit significant dependence on the substituents. The coplanar arrangement of the terminal azido- and iminium-groups at the benzenoid ring system seems to be an essential structural feature for the formation of cyclic N-diazonium ions $(1, E^2)$ - $(1, E^2)$ - $(1, E^2)$ - iminium-group) without this steric requirement cannot be cyclized under the same reaction conditions.

The formation of benzimidazoles through thermolysis (140-145 $^{\circ}$ C) of 2-azido-N-benzylidene-anilines has been reported by Krbechek and Takimoto $^{(4)}$ as well as by Hall and Kamm $^{(8)}$. In this case the experimental conditions establish the generation of nitrenes. These reactive intermediates can be precluded for our investigations because the reaction of 2-azido-N-(4'-R'-benzylidene)anilines ($\frac{4}{2}$) does not occur in the range of 90 - 120 $^{\circ}$ C, without mediation of a strong acid (tetrafluoroboric acid) or a reactive electrophile (methyl trifluoromethanesulfonate or triethyloxoniumtetrafluoroborate) $^{(9)}$.

ACKNOWLEDGMENT

This investigation was supported by the "Deutsche Forschungsgemeinschaft" and the "Fonds der Chemischen Industrie". The financial assistance is gratefully acknowledged.

REFERENCES

1) N_2 -Eliminations under the Influence of Electrophiles, Part 13.- Part 12: Reference 2. - 2) E. Stöldt and R. Kreher, Angew. Chem. <u>90</u>, 215 (1978); Angew. Chem. Int. Ed. Engl. <u>17</u>, 203 (1978). - 3a) R. Kreher and U. Bergmann, Tetrahedron Lett. <u>1976</u>, 4259; 3b) U. Bergmann, Part from the dissertation, Technische Hochschule Darmstadt, 1980. - 4) L. Krbechek and H. Takimoto, J. Org. Chem. <u>29</u>, 3630 (1964). 5) R. Weidenhagen and G. Train, Ber. Dtsch. Chem. Ges. <u>75</u>, 1936 (1942). - 6) L.N. Pushkina, S.A. Mazalov and I.Y. Postovskii, J. Gen. Chem. USSR <u>32</u>, 2585 (1962); Chem. Abstr. <u>58</u>, 9049 (1963). - 7) Cf. the independent formation of cyclic N-diazonium ions: E. Keschmann, E. Zbiral and J. Schweng, Liebigs Ann. Chem. <u>1977</u>, 1508. - 8) J.H. Hall and D.R. Kamm, J. Org. Chem. <u>30</u>, 2092 (1965). - 9) R. Kreher, Angew. Chem. <u>85</u>, 1061 (1973); Angew. Chem. Int. Ed. Engl. <u>12</u>, 1022 (1973).

Received, 30th June, 1980