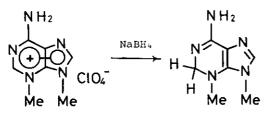
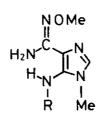

SYNTHESIS AND SODIUM BOROHYDRIDE REDUCTION OF 3,9-DIMETHYLADENINE PERCHLORATE DEUTERATED AT THE 2-POSITION

Tozo Fujii,* Tohru Saito, Tsuyoshi Nakasaka, and Kyoko Kizu Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920, Japan


<u>Abstract</u> — The NaBH₄ reduction of 3,9-dimethyladenine perchlorate (Ib) in MeOH was found to give the 1,2-dihydro derivative III. The structure of III was confirmed by a similar reduction of the 2-deuterated isomer XIV, which was synthesized from the methylaminoimidazole VI through the deuteroformamido derivatives VIII and XI. 3-Benzyl-9-methyladenine-2-d perchlorate (XV) was similarly prepared from the N-benzylformamidoimidazole V through the deformylated derivative VII and the deuteroformamido derivatives IX and XII. Comparison of the nmr spectra of Ib and 3-benzyl-9-methyladenine perchlorate (Ie) with those of XIV and XV permitted a distinction between C(2)- and C(8)-proton signals observed for 3,9dialkyladenine salts (Ia-1); the C(2)-proton resonates at lower field than does the C(8)-proton.

The most notable feature of the chemical behavior of 3,9-disubstituted adenine salts $(type I)^{1-4}$ is that they readily undergo reversible ring opening to equilibrate with the formamidoimidazoles (type II) in aqueous solution.²⁻⁴ This suggests that the center of low electron density in I is at C-2 rather than C-8. With the expectation of obtaining further evidence in support of this view, we investigated the NaBH4 reduction of 3,9-dimethyladenine perchlorate (Ib) to see whether the hydride ion attack occurs at C-2 and not at C-8.

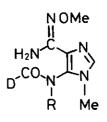
Treatment of Ib with NaBH, in MeOH at room temperature for 30 min afforded the 1,2dihydro derivative III [77% yield; mp 168-170°C (dec.);⁵ mass spectrum m/e: 165 (M⁺); $\lambda_{max}^{95\%}$ EtOH 291 nm (ϵ 5040); $\lambda_{max}^{H_2O}$ (pH 1) 291 (5180); $\lambda_{max}^{H_2O}$ (pH 7) 289 (5420); $\lambda_{max}^{H_2O}$ (pH 13) 265 (shoulder) (4230); nmr (Me₂SO-d₆) δ : 2.66 (3H, s, N(3)-Me), 3.54 (3H, s, N-



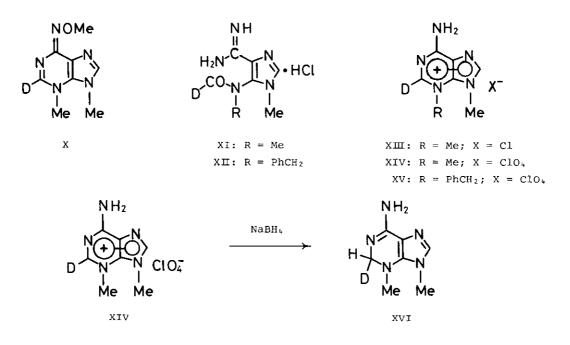
a: $R^{1} = Me$; $R^{2} = Me$; X = Clb: $R^{1} = Me$; $R^{2} = Me$; $X = ClO_{4}$ c: $R^{1} = Et$; $R^{2} = Me$; $X = ClO_{4}$ d: $R^{1} = Me_{2}CH$; $R^{2} = Me$; $X = ClO_{4}$ e: $R^{1} = PhCH_{2}$; $R^{2} = Me$; $X = ClO_{4}$ f: $R^{1} = P-(MeO)C_{6}H_{4}CH_{2}$; $R^{2} = Me$; $X = ClO_{4}$ f: $R^{1} = Me$; $R^{2} = Et$; $X = ClO_{4}$ h: $R^{1} = Et$; $R^{2} = Et$; $X = ClO_{4}$ i: $R^{1} = PhCH_{2}$; $R^{2} = Et$; $X = ClO_{4}$ j: $R^{1} = Me$; $R^{2} = PhCH_{2}$; $X = ClO_{4}$ k: $R^{1} = Et$; $R^{2} = PhCH_{2}$; $X = ClO_{4}$ l: $R^{1} = PhCH_{2}$; $R^{2} = PhCH_{2}$; $X = ClO_{4}$


NOMe $H_2N \xrightarrow{C} N$ $OHC \xrightarrow{N} I$ $PhCH_2 Me$ ∇

Ib



ш


VI: R = MeVII: $R = PhCH_2$

VIII: R = MeIX: $R = PhCH_2$

(9)-Me), 4.38 (2H, s, CH₂), 7.38 (1H, s, C(8)-H), 2.0-7.0 (NH₂)]. In order to prove the structure of III and rule out the alternative 7,8-dihydro structure IV, we next tried to synthesize the 2-deuterated isomer XIV of Ib, which should be reduced with NaBH, in a similar manner. Thus, the methylaminoimidazole VI, 1, 2 prepared from 1methoxy-9-methyladenine hydriodide⁵⁻⁸ according to our previous procedure, 1/2/9 was treated with an excess of DCO2D (of more than 99% isotopic purity) in MeCN at 30°C for 24 h to produce the deuteroformamido derivative VIII (76% yield; mp 160-161°C) together with the cyclized derivative X [4% yield; mp 280-280.5°C (dec.)]. Hydrogenolysis of VIII was effected with Raney Ni and H_2 (1 atm, $H_2O + 1$ molar equiv. of HCl, 21°C, 3.5-4 h) to furnish crude XI, which cyclized to 3,9-dimethyladenine-2-dhydrochloride (XIII)¹⁰ [48% yield; mp 285.5-287.5°C (dec.); nmr (Me₂SO-d₆) δ: 4.11 (3H, s, N(9)-Me),¹¹ 4.21 (3H, s, N(3)-Me),¹¹ 8.34 (1H, s, C(8)-H), 9.10 and 9.17 $(=NH_2^+ \text{ or } 2 \times NH)$] on treatment with Et₃N in boiling EtOH for 30 min. Alternatively, cyclization of the crude XI in MeOH (reflux, 7 h) in the presence of 70% ag. HClOu gave the perchlorate XIV [mp >300°C; nmr (Me₂SO- d_6) δ : 4.10 (3H, s, N(9)-Me),¹¹ 4.19 (3H, s, N(3)-Me), ¹¹ 8.32 (1H, s, C(8)-H), 9.10 and 9.17 (=NH² or 2 × NH)] in 71% yield.

The general utility of the above route for the synthesis of 2-deuterated 3,9-dialkyladenine salts was then checked by a parallel synthesis of the 3-benzyl analogue XV. The N-benzylformamidoimidazole V^2 was hydrolyzed (1 N aq. NaOH, reflux, 1 h) to give

	Compou	Compound			Chemical shift $(\delta)^{\alpha}$		
No.	R ¹	R ²	x	С(2)-Н	С(8)-Н	$\Delta \delta^{b}$	
Ia	Me	Me	Cl	8.61	8.34	-0.27	
Ib	Ме	Me	C104	8.58	8.32	0.26	
Ic	Et	Ме	C104	8.67	8.34	-0.33	
Id	Me ₂ CH	Ме	C104	8.83	8.34	-0.49	
Ie	PhCH ₂	Ме	C104	8.78	8.26	-0.52	
If	$p-(MeO)C_6H_4CH_2$	Me	C104	8.73	8.26	-0.47	
Ig	Me	Et	C104	8.59	8.43	0.16	
Ih	Et	Et	C104	8.68	8.46	-0,22	
Ii	PhCH ₂	Et	C104	8.79	8.40	-0.39	
Ij	Ме	PhCH ₂	ClO4	8.53	8.49	-0.04	
Ik	Et	PhCH ₂	C104	8.64	8.49	-0.15	
11	PhCH ₂	PhCH ₂	C104	8.72	8.37	-0.35	
ХШ ¹⁰	Ме	Me	C1		8.34°)		
XIV	Me	Me	C104		8.32		
xv	PhCH ₂	Me	C104		8.25		

TABLE 1. Chemical Shifts for C(2)- and C(8)-Protons of 3,9-Dialkyladenine Salts

a) Measured in Me₂SO- d_6 at 0.02-0.07 M concentration and expressed in ppm downfield from internal Me₄Si.

b)
$$\Delta \delta = \delta C(8) - H - \delta C(2) - H$$

c) Determined on 10^{-3} M solution.

the benzylamino derivative VI (81% yield; mp 97-98°C). Treatment of VI with DCO₂D (*vide supra*) in MeCN (30°C, 118 h) provided the deuteroformamido derivative IX (80% yield) as a thick oil. Hydrogenolysis (Raney Ni/H₂, H₂O + 1 molar equiv. of HCl, 21°C, 8 h) of IX and cyclization of the resulting XII (MeOH + 70% aq. HClO₄, reflux, 8 h) gave XV [mp 265.5°C (dec.); nmr (Me₂SO-d₆) δ : 3.74 (3H, s, N(9)-Me), 5.88 (2H, s, PhCH₂), 7.1-7.5 (5H, m, Ph), 8.25 (1H, s, C(8)-H), 9.33 and 9.40 (=NH₂⁺ or 2 × NH)] in 45% yield.

The NaBH₄ reduction of XIV was carried out in a manner similar to that described above for Ib, and the desired compound XVI [mp 169-170.5°C; mass spectrum m/e: 166 (M^+) ; nmr (Me₂SO-d₆) δ : 2.65 (3H, s, N(3)-Me), 3.54 (3H, s, N(9)-Me), 4.36 (1H, s, C(2)-H), 7.36 (1H, s, C(8)-H), 3.5-6.5 (NH₂)] was obtained in 73% yield. The nmr spectra of XVI and III were virtually identical except that the former displayed a one-proton singlet at δ 4.36 [C(2)-H], whereas the latter exhibited a two-proton singlet at δ 4.38 (CH₂). This established the 1,2-dihydro structure of III and excluded the 7,8-dihydro structure IV. The 6-amino structure of III and XVI was suggested by their ir spectra in dilute solutions (3.58 × 10⁻³ M and 3.37 × 10⁻³ M) in CHCl₃, which showed two sharp NH₂ absorption bands at 3540 ($\nu_{antisym}$) and 3425 cm⁻¹ (ν_{sym}).

Now that the deuterated analogues XII-XV have been available, interpretation of the nmr spectra of 3,9-dialkyladenine salts (type I) becomes easier. Table 1 lists the chemical shifts for the purine ring protons of Ia-1.^{1,2,4} It may be seen that one of the purine proton signals falls within the range 8.26-8.49 å and the other, in the 8.53-8.83 å region. Since the C(8)-protons of the deuterated analogues XIII-XV resonate in the former range, it is reasonable to assign the higher field signal of Ia-1 to the C(8)-proton; and the lower field signal, to the C(2)-proton. It follows that the contribution of resonance structures with the positive charge in the pyrimidine part may be fairly important for 3,9-dialkyladenine salts (type I). In conclusion, the results described above confirm that hydride ion attacks Ib at C-2 rather than C-8. The synthesis of the 3,9-dialkyladenines deuterated at the 2-position has made it possible to distinguish between the C(2)- and C(8)-protons of the salts Ia-1 nmr spectroscopically. It should be emphasized that this synthesis also presents a good example of the utilization of the facile ring opening⁹ of 1-alkoxy-9-alkyladenines for chemical modification of the adenine ring.

ACKNOWLEDGMENT This work was supported in part by a Grant-in-Aid for Special

-1733 -

Project Research (to Professor Y. Ban) from the Ministry of Education, Science and Culture, Japan.

REFERENCES

- T. Fujii, T. Itaya, K. Mohri, and T. Saito, <u>J. Chem. Soc., Chem. Comm</u>., 1973, 917.
- 2. T. Fujii, T. Saito, and M. Kawanishi, Tetrahedron Letters, 1978, 5007.
- 3. T. Saito and T. Fujii, J. Chem. Soc., Chem. Comm., 1979, 135.
- 4. T. Fujii, T. Saito, and T. Nakasaka, <u>Heterocycles</u>, 1980, 15, in press.
- 5. Satisfactory microanalytical and/or spectroscopic data have been obtained for all new compounds described.
- 6. T. Fujii and T. Itaya, <u>Tetrahedron</u>, 1971, <u>27</u>, 351.
- 7. T. Fujii, C. C. Wu, and T. Itaya, Chem. Pharm. Bull., 1971, 19, 1368.
- 8. T. Fujii, S. Kawakatsu, and T. Itaya, Chem. Pharm. Bull., 1974, 22, 2466.
- 9. T. Fujii, T. Itaya, C. C. Wu, and F. Tanaka, <u>Tetrahedron</u>, 1971, 27, 2415.
- 10. C₂H₈DN₅·HCl·1/2H₂O.
- 11. The assignment of the N(3) and N(9) -Me signals was based on comparison of these with the N-Me signals of Ic and Ig.

Received, 16th July, 1980