1,3-Dipolar cycloaddition reactions of Munchnone and Sydnone derivatives obtained from 4,5,6,7-tetrahydrothleno(3,2-c)pyridine-4 and -6 carboxyllc acids.

Jean-Pierre MAFFRAND

Departement Recherche et Developpement, Parcor , 195, route d'Espagne 31024 Toulouse Cedex,France

<u>Abstract</u> - The 1,3-dipolar cycloaddition of dimethyl acetylenedicarboxylate with mesoionic munchnones and sydnones derived from 4,5,6,7-tetrahydrothie-no(3,2-c)pyridine-4 and -6 carboxylic acids afforded respectively new ring-fused pyrroles and pyrazoles.

The conversion of secondary amino acids into pyrroles via intermediate mesoionic 1,3-oxazolium-5-olates (munchnones) 1 has been utilized in converting the "cyclic" amino acids, tetrahydro- β -carboline-1 and -3 carboxylic acids 2 and tetrahydroisoquinoline- 3 and -3 carboxylic acids into novel ring-fused pyrroles. These reactions involved a 1,3-dipolar cycloaddition of the munchnone, behaving like a cyclic azomethine ylide 5 , to the corresponding acetylenic or olefinic dipolarophile followed by CO₂ evolution, and aromatization or tautomerization.

The present paper deals with the application of the above reaction on two other types of cyclic amino acid ring systems, namely 4,5,6,7-tetrahydrothieno(3,2-c)pyridine-4 and -6 carboxylic acids. Moreover it will describe the synthesis of fused-pyrazoles by a similar reaction with the corresponding 1,2,3-oxadiazolium-5 olates (sydnones)².

The amino-acid 4 was prepared by Pictet-Spengler cyclisation with formaldehyde of $(^{\pm})-\beta-(2-thie-nyl)$ alanine $\mathfrak A$ or by hydrogenolysis of compound $\mathfrak Z^6$ with stannous chloride-hydrochloric acid in acetic acid.

The amino acid 12 (F > 260°) was easily obtained by condensation of 2-(2-thienyl)ethyl amine with glyoxylic acid, in water, at room temperature. The conversion of 4 into the 5,9-dihydro-thie-no(3,2-f)indolizine 7, involved treatment with dimethyl acetylenedicarboxylate in acetic anhydride. No attempt was made to isolate the highly reactive intermediate munchnone 5 and rearrangement of the presumed adduct 6 could be followed by ${\rm CO}_2$ evolution. But all attempts to convert 12 in the same way were unsuccessful.

The N-nitroso- α -amino-acid % (F= 155°(H₂O-EtOH)) was cyclodehydrated using acetic anhydride and the resulting sydnone % (F= 182°(EtOH)) underwent a 1,3-dipolar cycloaddition with dimethyl acetylenedicarboxylate in refluxing benzene to give the fused-pyrazole % (F= 143°(iPrOH)). Similarly, the crude N-nitroso-derivative % (F_{dec} = 145-150°) was transformed into % (F= 80° (iPrOH-iPr₂O)) via the syndnone % (F= 165°(iPrOH)).

ACKNOLEDGEMENT Alaın Badorc rendered skilful technical assistance.

No	IR V(cm ⁻¹)	¹ H. N.M.R. δ(ppm) , J (Hz)
7	^ν co:1725,1700	(CDCl ₃): 2,35(s,3H); 3,75(s,3H); 3,77(s,3H); 4,18(t,2H,J=3); 4,78(t,2H,J=3); 6,78, 7,18(2d,2H,J=5,5)
82	^V CO:1710	(DMSO d ₆): 4,27, 5,17(2d,2H); 6,07(q,1H); 6,88, 7,37 (2d,2H,J=5,5)
oγ	^V CO :1730	(DMSO d ₆) : 3,87(t,2H,J=4) ; 5,50(t,2H,J=4) ; 6,95 , 7,48(2d,2H,J=5,5)
10	^V CO:1745,1702	(CDCl ₃): 3,84(s,3H); 3,88(s,3H); 4,30(t,2H,J=4,0); 5,23(t,2H,J=4); 6,83, 7,25(2d,2H,J=5,5)
₹₹	ν _{C00} -:1555,1625	(CF ₃ COOH) : 3,25(s ^x ,2H); 3,85(s ^x ,2H); 5,50(s ^x ,1H); 7,15 , 7,33(2d,2H,J=5,5)
叔	^V CO :1730	(DMSO d ₆): 4,21(m,1H); 4,93(m,1H); 5,82(s,1H); 6,98, 7,30(2d,2H,J=5,5)
14	^V CO :1740,1755	(DMSO d ₆) : 3,37(t,2H,J=7,5); 4,67(t,2H,J=7,5); 7,12 , 7,43(2d,2H,J=5,5)
ĮĘ.	^V co:1705	(CDCl ₃): 3,28(t,2H,J=7,5); 3,92(s,3H); 3,97(s,3H); 4,45(t,2H,J=7,5); 7,25, 7,73(2d,2H,J=5,5)

 $s^{::}$: broadened singlet

REFERENCES

- 1 R. Huisgen, H. Gotthardt, H.O. Bayer and F.C. Schafer, Chem.Ber., 1970, 103, 2611.
- 2 F.M. Hershenson, J.Org.Chem., 1972, 37 (20), 3111.
- 3 F.M. Hershenson, J.Org. Chem., 1975, 40(6), 740.
- 4 F.M. Hershenson, J. Het. Chem., 1979, 16, 1093.
- 5 W.D. Ollis and C.A. Ramsden, Adv. Heterocyclic Chem., 1976, 19,1.
 - C.A. Ramsden , in Comprehensive Organic Chemistry, ed. Pergamon Press, Vol. 4,1979, p. 1171.
- 6 J.P. Maffrand (Parcor), Fr. demande 2,376,860 , 07 Jan. 1977.

Received, 9th September, 1980