SYNTHESIS OF (\pm) -ELAEOKANINE E AND (\pm) -12-EPIELAEOKANINE D Toshio Watanabe,' Yoshihiko Nakashita, Sadamu Katayama, and Masashige Yamauchi

Faculty of Pharmaceutical Sciences, Josai University 1-1, Keyakidai, Sakado, Saitama 350-02, Japan

Toshio Watanabe,* Yoshihiko Nakashita, Sadamu Katayama, and
Masashige Yamauchi
Faculty of Pharmaceutical Sciences, Josai University
1-1, Keyakidai, Sakado, Saitama 350-02, Japan
Summary --- The synthesis of (<u>+</u>)-elaeokani epielaeokanine $D \left(\frac{0}{2} \right)$ has been achieved by the stereoselective Birch reduction of epimeric dihydro-y-pyrone derivatives *(6)* and **(7).**

Elaeokanines E (1) and D (2), isolated from Elaeocarpus kaniensis Schltr. by Johns <u>et al</u>.,¹ are epimers with respect to C-7 and have both the characteristic trans-indolizidine and tetrahydro-y-pyrone ring system. In connection with our synthetic studies on Elaeocarpus alkaloids,² we wish to report here the first total synthesis of (\pm) -elaeokanine E (\pm) and (\pm) -12-epielaeokanine D $(\underline{8})$.

elaeokanine E (**1**) **elaeokanine D (2)**

The Grignard reaction of the aldehyde (4) , ² prepared from the keto ester (3) \underline{via} 4 steps [(i) LiAlH₄/THF-Et₂O, -70° (ii) $(CH_2OH)_{2}$ /TsOH/C₆H₆ (iii) LiAlH₄/THF-Et₂O, reflux (iv) NCS-DMS/toluene-CH₂C1₂], by refluxing with allylmagnesium bromide in THF-Et₂0 for 3 hr, followed by the Jones oxidation gave the ketone (5) . This ketone (5) exhibits its carbonyl absorption at 1715 cm⁻¹, which changes to that at 1690 and 1670 cm^{-1} owing to the double bond migration on standing at room temperature. Deketalization of (5) under various acidic conditions (47% aq. HBr, 10 hr; cond. HCl, 2 days; 50% H_2SO_4 , 2 days) accompanied by the cyclisation gave two dihydro-y-pyrone derivatives $(\underline{6})^3$ and $(7)^4$ in the ratio of 3.5:1 in 30% total yield from (4). Reduction of the pyrone (6) in liquid ammonia-absolute EtOH with lithium at -80° afforded only one product, (\pm) -elaeokanine E $(\frac{1}{\lambda})$, whose spectral data [I.R. (CCl₄): 1710 cm⁻¹; Mass <u>m/e</u>: 209 (M⁺), 208, 192, 166, 122, 97; N.M.R. (CDCl₃): δ 1.33 (3H, d, J=6 Hz, CH₃), 3.75 (1H, m, H-12), 3.83 (1H,

 $\mathcal{L}^{\text{max}}_{\text{max}}$

 $\overline{1}$

 (1)

 \downarrow

narrow m, H-7)] were identical with those of the natural alkaloid, in 80% yield. Catalytic hydrogenation of the acetate salt of (6) with PtO₂ in absolute EtOH also gave (\pm) -(1) in 30% yield. From these results, we concluded that the methyl configurations at $C-12$ in (6) and (7) were α and β , respectively. In the metal reduction of α , β -unsaturated ketones, the stereochemical outcome at the β -carbon will be determined by the organometallic intermediate adopting the conformation of lowest energy prior to protanation, and the configuration at the a-carbon, which is controlled by the nature of the protonation of the intermediate enol, is usually less important.⁵ In the Birch reduction of pyrones $\binom{6}{2}$ and $\binom{7}{2}$, conformers (6) ' and (2) ' would be more stable allylic anion intermediates, respectively. The former could furnish cis A/B ring junction, and the latter would result trans A/B ring junction. In fact, the product (8) obtained in 80% yield, showed no narrow maltiplet signal for H-7 in $\frac{\text{cis}}{\text{cis}}$ A/B ring¹ and the spectral data⁶ were not identical with those of natural elaeokanine D (2).¹ Therefore the compound (8) was identified as (+)-12-epielaeokanine D.

Acknowledgment We are indebted to Or. J.A. Lamberton ICSIRO, Melbourne) for the gift of the N.M.R. spectrum of natural elaeokanine E.

References and Notes

- 1. N.K. Hart, S.R. Johns, and J.A. Lamberton, Chem. Commun., 1971, 460; Idem., erences and Notes
N.K. Hart, S.R. Johns, and J.A.
<u>Aust</u>. <u>J</u>. <u>Chem</u>., 1972, 25, 817.
T. Watanabe. Y. Nakashita. S. K
- 2. T. Watanabe, Y. Nakashita, S. Katayama, and M. Yamauchi, <u>Heterocycles</u>, 1980,
14, 1433. 14, 1433.
3. I.R. (CCl₄): 2800-2600, 1670, 1610 cm⁻¹; Mass <u>m/e</u>: 207 (M⁺); N.M.R. (CDCl₃):
- 6 1.44 (3H, d, J=6.4 Hz, CH₃), 4.23-4.64 (1H, m, H-12).
- 4. I.R. $(CC1₄)$: 2800-2600, 1670, 1620 cm⁻¹; Mass m/e: 207 (M⁺); N.M.R. (CDC1₃): δ 1.43 (3H, d, J=6.4 Hz, CH₃), 4.23-4.65 (1H, m, H-12).
- 5. H.O. House, "Modern Synthetic Reactions" 2nd ed., W.A. Benjamin, Inc., California, 1972, pp 173-205.
- 6. I.R. (CCl₄): 1710 cm⁻¹; Mass m/e: 209 (M⁺), 208, 192, 166, 122, 97; N.M.R. $(CDC1₃)$: 6 1.34 (3H, d, CH₃), 3.75 (1H, m, H-12).

Received, 13th September, 1980