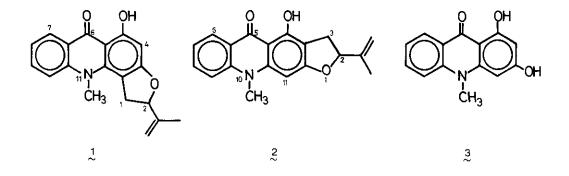
SYNTHESIS OF (±)-RUTACRIDONE

Iuliu Mester* and Johannes Reisch Institute of Pharmaceutical Chemistry, University of Münster, Hittorfstraße 58-62, D-4400 Münster (Germany)

Zsuzsa Rózsa and Kálmán Szendrei Department of Pharmacognosy, University Medical School, Pf. 121, H-6701 Szeged (Hungary)


<u>Abstract</u> --- (\pm)-Rutacridone ($\stackrel{1}{,}$) was synthesized by condensation of 1,3-dihydroxy-10-methylacridone ($\stackrel{3}{,}$) with isoprene dibromide. As by-product the linear isomer (\pm)-isorutacridone ($\stackrel{2}{,}$) was also obtained.

The alkaloid (-)-rutacridone was isolated² some time ago as the first member of a series of dihydrofuroacridone derivatives from the roots of <u>Ruta graveolens</u> L. (Rutaceae). Its structure as 1 was established²⁻⁴ on the basis of spectroscopic evidences. Recently Gonzales et al.⁵ have isolated the same alkaloid from <u>Ruta chalepensis</u> L. and proposed the alternative linear structure 2 for it.

As a further contribution to the synthesis of acridone alkaloids⁶, we report here a simple one-step synthesis of (±)-rutacridone (1) by condensation of 1,3-dihydroxy-10-methylacridone (3) with 1,4-dibromo-2-methyl-but-2-ene (isoprene dibromide), using the procedure of Nickl^{7,8} to obtain isopropenyldihydrobenzofuran derivatives. Two isomeric products ($C_{19}H_{17}NO_3$, M^+ 307) were obtained. Comparison of their ¹H-NMR, and especially their ¹³C-NMR spectra showed that in one of the isomers the resonance of the N-methyl and furan-methylene groups are shifted to lower fields. Earlier, we have demonstrated, that such a shift of N-methyl signal is caused by substitution in position 4 of a 10-methylacridone molecule^{6,9}. Thus this isomer must have an angular anellation. As the latter showed identical IR, ¹H-NMR, ¹³C-NMR, and mass spectra with the naturally occurring (-)-rutacridone, the angular structure of the naturally alkaloid is thus determined beyond any doubt.

The other isomeric product, consequently, should have a linear anellation corresponding to structure 2, for which the name (±)-isorutacridone is proposed.

A solution of 1,3-dihydroxy-10-methylacridone (3) (600 mg) in methanol (10 ml) containing sodium (114.5 mg) was treated with 1,4-dibromo-2-methyl-but-2-ene (568 mg). After standing 4 days at room temperature, the mixture was diluted with water (50 ml) and extracted with ethyl acetate.

Concentration of the ethyl acetate solution gave a gum (452 mg), that was resolved by tic (silica gel, eluent toluene-ethyl acetate 4:1) into (±)-isorutacridone (2) (highest R_f , 40 mg, yield 5.2%), (±)-rutacridone (1) (middle R_f , 118 mg, yield 15.4%), and unreacted 1,3-dihydroxy-10-methyl-acridone (3) (lowest R_f , 49 mg).

(±)-Rutacridone (1) has mp. 145-147°C; IR (KBr): 3420 (broad, OH), 3082 (=CH₂), 1635 cm⁻¹ (CO); ¹H-NMR (CDCI₃): δ =1.78 (3H, s, CH₃), 3.59 (2H, m, furan CH₂), 3.80 (3H, s, NCH₃), 4.95 and 5.10 (2H, m, exocyclic CH₂), 5.11 (1H, m, H-2), 6.09 (1H, s, H-4), 7.13 (1H, m, H-8), 7.23 (1H, bd, J=8.4 Hz, H-10), 7.58 (1H, m, H-9), 8.21 (1H, ddd, J=8.0, 1.2 and 0.6 Hz, H-7), 15.20 (1H, s, OH); ¹³C-NMR (CDCI₃): δ =17.11 (CH₃), 37.16 (C-1), 37.71 (NCH₃), 86.07 (C-2), 92.40 (C-4), 99.68 (C-11b), 105.95 (C-5a), 112.74 (CH₂), 114.53 (C-10), 120.87 (C-6a), 121.39 (C-8), 126.04 (C-7), 133.74 (C-9), 143.16 (C-10a, C-11a, H₃C-C=CH₂), 166.07 (C-5), 167.27 (C-3a), 180.63 (C-6); MS (80 eV): m/e (% rel. int.)= 307 (M⁺, 100), 292 (38), 278 (22), 264 (22), 250 (13), 239 (17), 236 (15), 211 (12), 180 (7), 146 (9), 107 (12), 89 (8), 77 (24).

(±)-Isorutacridone (2) has mp. 168-170°C; IR (KBr): 3440(broad, OH), 1660 cm⁻¹ (CO);

¹H-NMR (CDCl₃): $\delta = 1.78$ (3H, t, J=0.6 Hz, CH₃), 3.18 (2H, m, furan CH₂), 3.72 (3H, s, NCH₃), 4.94 and 5.11 (2H, m, exocyclic CH₂), 5.31 (1H, t, J=9.6 Hz, H-2), 6.27 (1H, s, H-11), 7.23 (1H, m, H-7), 7.41 (1H, bd, J=8.0 Hz, H-9), 7.67 (1H, m, H-8), 8.39 (1H, ddd, J=7.8, 1.8 and 0.6 Hz, H-6), 15.07 (1H, s, OH); ¹³C-NMR (CDCl₃): $\delta = 17.09$ (CH₃), 30.71 (C-3), 34.25 (NCH₃), 85.20 (C-2), 88.00 (C-11), 105.06 (C-3a), 105.61 (C-4a), 112.43 (CH₂), 114.45 (C-9), 120.91 (C-5a), 121.34 (C-7), 126.54 (C-6), 133.62 (C-8), 141.97 (C-9a), 143.53 (C-10a, H₃C-<u>C</u>=CH₂), 160.07 (C-4), 167.32 (C-11a), 180.35 (C-5); MS (80 eV): m/e (% rel. int.) = 307 (M⁺, 64), 292 (100), 290 (9), 277 (7), 266 (8), 264 (9), 254 (7), 236 (3), 180 (3), 154 (7), 146 (8), 115 (5), 89 (5), 77 (15).

Acknowledgement

Financial supports from the Deutsche Forschungsgemeinschaft are gratefully acknowledged.

References

- Studies on the Field of Natural Product Chemistry, 82. Part 81: J.Reisch and A.S.El-Sharaky, J.Chromatogr., (in press).
- 2. J.Reisch, K.Szendrei, E.Minker and I.Novák, Acta pharm.suecica, 1967, 4, 265.
- 3. J.Reisch, K.Szendrei, I.Novák and E.Minker, Sci.Pharm., 1972, 40, 161.
- 4. J.Reisch, Zs.Rózsa and I.Mester, Z.Naturforsch., 1978, 33b, 957.
- A.G.Gonzales, E.Diaz Chico, H.Lopez Dorta, J.R.Luis and F.Rodriguez Luis, <u>An.Quim.</u>, 1976, 72, 94.
- 6. J.Reisch, I.Mester, S.K.Kapoor, Zs.Rózsa and K.Szendrei, Liebigs Ann.Chem., (in press).
- 7. J.Nickl, <u>Chem.Ber.</u>, 1958, <u>91</u>, 553.
- 8. Y.Kawase, S.Yamaguchi, S.Kondo and K.Shimokawa, Chem.Letters, 1978, 253.
- 9. I.Mester, D.Bergenthal, Zs.Rózsa and J.Reisch, Z.Naturforsch., 1979, 34 b, 516.

Received, 10th September, 1980