CYCHIZATIONS OF N-ALKYLAZINIUM CATIONS WITH BISNUCLEOPHILES¹. ONE-STEP ROUTE TO FURO[2,3-b]QUINOXALINES

Valery N.Charushin, Oleg N.Chupakhin The Department of Organic Chemistry. The Urals Polytechnical Institute, Sverdlovsk, The USSR and Anatoly I.Rezvukhin

NMR Leboratory, Institute of Organic Chemistry, Novosibirsk, The USSR

N-Alkylquinoxalinium selts react with anions of β -diketones at a temperature below 20°C to yield endo-furo[2,3-b]quinoxalines.

A number of one-step syntheses of interesting and useful bicyclic and heterobicyclic compounds was developed by M.Strauss and coworkers²⁻⁶ using meta bridging reactions of electron-deficient arometics with bisnucleophiles. Meta bridging adducts have been also obtained in the reaction of unsubstituted N-ethoxyquinolinium cation with enamines⁷. Similar cyclization, but with orthobonding of heteroarometic system has been discovered to take place in the reaction of N-alkylquinoxalinium salts (1) with enamines of cyclic ketones¹ as shown below.

The present communication describes a novel reaction of salts 1 with β -diketonic reagents such as acetylaceton (AA) and ethyl acetoacetate (EAA) in the presence of base. Addition of base (diethyl or triethylamine) to an ethanolic suspension containing salt 1 and β -diketone at -50 - +20°C resulted in an exothermic reaction which ended in a few minutes to give endo-3a,4,9,9a-tetrahydrofuro[2,3-b]quinoxalines 4 a-d in good yields (table 1).

Table 1. Reactions of salts 1 with B -diketones in ethenol

Reaction conditions		No	Product	vield (%)
temp. (°C)	Time (min)		mp(°C) ^b	·
-50	5	4a	118-120	78
-30	5	4a	**	75
+20	5	4a		58
+20	15	48	**	50
-50	5	4b	114-115	75
+20	5	4c	115–116	76
-50	5	4đ	108–109	75
	Reaction co. temp. (°C) -50 -30 +20 +20 -50 +20 -50	Reaction conditions temp. (°C) Time (min) -50 5 -30 5 +20 5 +20 5 +20 5 +20 5 +20 5 +20 5 -50 5 +20 5 -50 5 -50 5	Reaction conditions temp. (°C) No -50 5 4a -30 5 4a +20 5 4a +20 5 4a +20 5 4a +20 5 4a -50 5 4b -50 5 4c -50 5 4d	Reaction conditions No Product temp. (°C) Time (min) $mp(°C)^b$ -50 5 4a 118-120 -30 5 4a " +20 5 4a " +20 15 4a " -50 5 4b 114-115 +20 5 4c 115-116 -50 5 4d 108-109

^aThe ratio of reagents 1: diketone: base was 2:5:5 in all cases.

^bMelting points were determined approximately under rapid heating. Decomposition of substances took place above 90°C under slow heating.

In accordance with the reactivity of salts <u>1</u> in nucleophilic addition reactions⁸ we are obliged to suppose that oxygen attack of β -diketone enclate at C-2 occurs initially under these conditions to give intermediate <u>3</u> followed by intramolecular cyclization. It should be pointed out that in cyclizations of nitroaromatics with β -diketones the oxygen attack was never observed^{2,3}.

Other features of this reaction are high regio- and stereoselectivity. For none of the adducts <u>4 a-d</u> were there any indications of the presence of mixtures of regio- or stereoisomers in ¹H and ¹³C nmr spectre.

Evidence for structure of compounds 4 = -d is provided by ir, nmr and mass spectra. The N-methyl nmr signals for 4a (53.04) and 4c (53.03) and nerrow

multiplets of aromatic protons for 4 = -4 (δ 6.4-6.9) are consistent with tetrehydroquinoxaline structure⁸. The proton H-9s appeared as a simple doublet, while the proton H-3s appeared as a doublet of quarters with a small coupling constant between H-3s and protons of methyl group at position 2 of furan ring (table 2). In order to confirm the assignment of chemical shifts and coupling constants C-3s and C-9s deuterated 4a was prepared and double nmr procedure was used.

Adducts ⁸	IR (cm ⁻¹)		Chemical shifts ^b ,			Coupling	Constants, Hz
	NH	C=O, C=C	R-3a	H-9a	5. a	3a,9a	3a,methyl
4 a	3320	1600-1640	5.04	5.78		9.0	0.9
4b	3328	1600-1640	4•95	5.86		8.7	0.9
4c	3370	1695,1635	4.97	5.79		8.9	1.0
4đ	3368	1695,1640	4.93	5.91		8,8	0.9

Table 2. Some spectral data of compounds 4a-d

^aAll compounds gave acceptable microanalyses.

^bThe spectra were recorded at 60 MHz in CdCl₃ solution with TMS as internal standard.

The coupling constants between H-3a and H-9a were in the range from 8.7 to 9.0 Hz and pointed out to endo-adducts 4 <u>s-d</u> rather than to exo-isomers⁹. Convincing evidence for 4a to be endo-isomer was obtained by X-ray crystallography¹⁰. Taking into account the similarity of nmr spectra of adducts 4d-a it seems highly probable that all compounds 4 a-d are endo-isomers.

Since 13 C nmr signal of methyl group of furan ring was observed for both <u>4a</u> (δ 15.4) and <u>4c</u> (δ 14.3) the oxygen of acetic but not carbethoxy group of EAA participates in cyclications with salts <u>1</u>.

Thus, the reaction of salts <u>1</u> with β -diketones yields endo-adducts <u>4 a-d</u> and differs from the one with enamines of ketones where exo-adducts <u>2</u> have been obtained.

REFERENCES

1. Communication II. For part I see O.N.Chupekhin, V.N.Charushin, Yu.V.Shnurov, <u>J.Org.Chem.USSR</u>, 1980, 16, 1064.

- 2. M.J.Strauss, Accts Chem. Res., 1974, 7, 181.
- 3. M.J.Strauss, T.C.Jensen, H.Schran, K.O.Conner, J.Org.Chem., 1970, 35, 383.
- 4. R.R.Bard, M.J.Strauss, J.Am. Chem. Soc., 1975, 97, 3789.
- 5. (a) R.R.Bard, M.J.Strauss, <u>J.Org.Chem.</u>, 1977, <u>42</u>, 2589;
 (b) M.J.Strauss, D.C.Palmer, R.R.Bard, <u>J.Org.Chem.</u>, 1978, 43, 2041.
- 6. B.De Croix, M.J.Strauss, A.D.Fusco, D.C.Palmer, J.Org.Chem., 1979, 44, 1700.
- 7. (a) M.Hamans, H.Noda, K.Narimatsu, I.Ueds, <u>Chem. Pharm</u>. Bull., 1975, 23, 2918;

(b) H.Nods, K.Narimatsu, M.Hamana, I.Ueda, <u>Heterocycles</u>, 1975, 3, 1127.

- 8. J.W.Bunting, M.G.Mesthrel, Can. J. Chem., 1972, 50, 919.
- 9. A.B.Bothner-By, <u>Advan.Magn.Reson</u>., 1965, 1, 195.
- 10. Special communication will be published.

Received, 25th August, 1980