STUDIES ON HETEROCYCLIC COMPOUNDS IV¹. NOVEL DIAZOTIZATION PRODUCT OF ETHYL 5-AMINOFURAN-2-CARBOXYLATE

Sheng-Chu Kuo^{*}, Chun-Hsiung Wu and Chung-Chiee Wang School of Pharmacy, China Medical College, Taichung 400, Taiwan, Republic of China Akira Tanaka Faculty of Pharmaceutical Sciences, Josai University, Keyakidai 1-1, Sakado-Shi, Saitama, 350-02 Japan Chun-Chen Liao Department of Chemistry, National Tsing Hua University, 855, Kuang Fu Rd. Hsinchu, Taiwan, Republic of China

<u>Abstract</u>—Using ethyl 5-aminofuran-2-carboxylate as starting material for diazotization following standard method, instead of obtaining the usual diazonium salt, we isolated and characterized an unexpected dimeric product—diethyl 2'3'4'5'tetrahydro-5,5'-dioxo (2,3'-bifuran) -2,2'(5H)-dicarboxylate.

It was found that no pure products after diazotization of α -aminofuran compounds have been isolated² and no further attempts on the synthesis of α -arylfuran derivatives via diazotization and Meerwein reaction have been found in literature. Therefore, we conducted the following experiments to study the interesting chemical behavior of those α -aminofuran derivatives.

As shown in Scheme I, Diazotization of ethyl 5-aminofuran-2-carboxylate (1) by using standard method reacting under $0 \sim 5^{\circ}$ C, resulted a novel product (4), mp 94.5 $\sim 95^{\circ}$ C (from EtOH-H₂O), instead of a diazonium salt. The yield of this unexpected product is 48%.

Based on mass spectrum (M⁺ 312) and elemental analysis, the molecular formula of <u>4</u> was determined as $C_{14}H_{16}O_8$. The ir spectrum showed four carbonyl absorptions at 1732, 1742, 1770, 1790 cm⁻¹. The UV absorption at λ_{max}^{EtOH} 229 m μ was due to the enone chromophore. The 'H-nmr spectrum exhibited two ethoxyl groups at δ 1.32 (t, J=8.0Hz, CH₃x2) and δ 4.22 (q, J=8.0Hz, CH₂x2), a vinylene group at δ 7.35 (d, J= 5.5Hz, C₃-H) and δ 6.24 (d, J=5.5 Hz, C₄-H) and an ABXY type signals at δ 2.27 (dd, J_{BA}=18.4Hz, J_{BX}=5.5Hz, C₄,-H_B), δ 2.74 (dd, J_{AB}=18.4Hz, J_{AX}=10.0Hz, C₄,-H_A), δ 3.44 (m, J_{XA}=10.0Hz, J_{XB}=5.5Hz, J_{XY}=4.4Hz, C₃,-H_X) and δ 4.85 (d, J_{XY}=4.4Hz, C₂,-H_Y). The assignment of C₃,-H_X was further confirmed by selective decoupling on ¹³C-nmr spectrum. It was found that the signal at δ 42.4 which could be accounted for by the C₃, became singlet when the singal at δ 3.44 was irradiated, whereas the signal at δ 3.44 is attributable to the C₃,-H_X. The downfield shift of this methine proton could be explained by the magnetic anisotropic effect of the two carbonyl groups at C₂ and C_{2'}.

ppm	C-H coupling (in the case of off resonance)	Carbon
13.9	d•	<u>C</u> H ₃
14.0	q.	CH3
27.7	t.	C-4'
42.4	d.	C-3'
62.6	t-q.	-0- <u>C</u> H2-CH3
63.7	t-q.	-0- <u>C</u> H2-CH3
76.4	đ.	C-2'
88.7	s.	Č-2
124.2	d.	C-3
152.1	d.	C-4
165.8	S.	C=O
168.6	s.	C=O
170.1	S.	C=O
173.4	S.	C=0

Table ¹³C-NMR of 4

JEOL FX100 TMS as an internal standard CDCl₃ as a solvent.

From the above data, we were convinced that compound <u>4</u> was proved to be diethyl 2'3'4'5'-tetrahydro-5,5'-dioxo (2,3'-bifuran) -2,2'(5H)-dicarboxylate. As to the stereochemistry of compound 4, the assignment were mainly based upon 'H-nmr spectrum. The coupling constants between $C_{4'}$ -H and $C_{3'}$ -H_X are 10.0Hz and 5.5Hz which suggest $C_{3'}$ -H_X and $C_{2'}$ -H_Y (J_{XY}=4.4Hz) are trans to each other. Therefore, the relative configuration was assigned as that shown in the structure of compound <u>4</u>. The mechanism of the formation of <u>4</u> could be explained as Scheme II, that is the diazonium slat (2) which formed after diazotization of <u>1</u> was then converted to

hydroxyfuran compound (5a) which existed in tautomeric forms. Compound 4 was then formed from 5a and 5b via Michael addition.

Scheme II

Based on the mechanism suggested above, we understand that the diazonium salt (2) is rather unstable, therefore, we tried to synthesize 5-arylfuran derivatives by proceeding both diazotization and Meerwein reaction at the same time, that was to dissolve compound 1 into benzene (or anisole), and in the present of dil HCl and $CuCl_2$, $NaNO_2$ solution was added dropwise at different temperatures. However, the same dimeric compound 4 was obtained and the success of synthesis of α -arylfurans from α -aminofurans needs further efforts. REFERENCES

- Part III, Wu-Hsiung Wong, Sheng-Chu Kuo and Hong-Yen Hsu, <u>China Medical College</u> <u>Annual Bulletin</u>, 1979, <u>10</u>, 825.
- 2. a) H.B. Stevenson and John R. Johnson, <u>J. Am. Chem. Soc</u>., 1937, <u>59</u>, 2525.
 b) I.J. Rinkes, <u>Rec. Trav. Chim.</u>, 1932, <u>51</u>, 349.

Received, 18th October, 1980