THE ORIGIN OF THE N-FORMYL GROUP IN NATURE AND THE BIOGENESIS OF CATHARINE AND CATHARININE

Natesan Murugesan* and Maurice Shamma, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.

The presence of an N-formyl group in an alkaloid often points to an <u>in</u> vivo Baeyer-Villiger oxidative rearrangement of an iminium precursor. Vinblastine $(\underline{3})$ is thus shown to be the most likely progenitor for the accompanying alkaloids catharine (1) and catharinine ($\underline{2}$) in <u>Catharanthus</u> spp.

The importance of the Baeyer-Villiger type oxidative rearrangement of iminium salts in alkaloid biogenesis has only recently been recognized. The in vivo formation of the N-formyl groups in the benzylisoquinoline polycarpine¹ as well as in the benzophenanthridine derivatives iwamide, arnottianamide, and isoarnottianamide, 2 has been explained using such a process.³

The dimeric indole alkaloids catharine $(\underline{1})^4$ and catharinine $(\underline{2})^5$ have been found in a variety of Catharanthus species, ⁶ and are structurally related to the important and accompanying antitumor alkaloid vinblastine (3),

1

2

 $\underline{3}$

-257-

Alkaloids <u>1</u> and <u>2</u> bear an N-formyl group, and the problem of their biogenesis revolves essentially around the formation of this moiety. A variety of different precursors have been assumed, all proceeding to formaldiminium salts that can undergo an ill-defined oxidation to the corresponding formamides.^{5,7}

Reconsideration of the biogenetic scheme for catharine $(\underline{1})$ and catharamine $(\underline{2})$ makes it clear that a common precursor must be the accompanying alkaloid vinblastine $(\underline{3})$. This dimeric compound , may readily lead to iminium species $\underline{4}$ and $\underline{5}$ which can suffer Baeyer-Villiger oxidative rearrangement as their key transformation in nature, to furnish eventually alkaloids $\underline{1}$ and $\underline{2}$, respectively (Scheme). ^{8,9}

Although other routes to formylation in nature are known,¹⁰ it is evident from the above that the Baeyer-Villiger type oxidative rearrangement of iminium salts must be borne in mind whenever the biogenesis of alkaloidal formamides is considered.

<u>Acknowledgment</u>: This effort was supported by grant NS-15437 awarded by the National Institute of Neurological and Communicative Disorders and Stroke, USPHS.

References and Footnotes

- N. Murugesan and M. Shamma, <u>Tetrahedron Lett.</u>, 4521 (1979). See also N. Murugesan and M. Shamma, Heterocycles, 14, 585 (1980).
- H. Ishii, T. Ishikawa, S.-T. Lu and I.-S. Chen, <u>Tetrahedron Lett.</u>, 1203 (1976); and
 T. Ishikawa and H. Ishii, <u>Heterocycles</u>, <u>5</u>, 275 (1976).
- For a general discussion of the chemistry of the benzylisoquinoline and benzophenanthridine alkaloids, see M. Shamma and J.L. Moniot, <u>Isoquinoline Alkaloids Research</u>, <u>1972-1977</u>, Plenum Press, New York (1978), pp. 27 and 271.
- 4. P. Rasoanaivo, A. Ahond, J.-P. Cosson, N. Langlois, P. Potier, J. Guilhem, A. Ducruix, C. Riche, and C. Pascard, C.R. Acad. Sci., Ser. C, 279, 75 (1974).
- 5. R.Z. Andriamialison, N. Langlois, P. Potier, A. Chiaroni, and C. Riche, <u>Tetrahedron</u>, <u>34</u>, 677 (1978).
- 6. N. Langlois, R.Z. Andriamialisoa and N. Neuss, <u>Helv. Chim. Acta</u>, <u>63</u>, 793 (1980).
- 7. L. Diatta, R.Z. Andriamialisoa, N. Langlois and P. Potier, Tetrahedron, 32, 2839 (1976).
- 8. There is always a possibility that the true precursor of <u>1</u> and <u>2</u> may be a very close analog of <u>3</u>, rather than <u>3</u> itself. Additionally, it is difficult to say specifically at which stage the dehydration step required for catharine formation occurs.
- 9. We favor iminium intermediates $\underline{4}$ and $\underline{5}$ in the biogenetic scheme, over alternate Baeyer-Villiger oxidation of formal diminium salts $(\sum_{N=CH_2}^{\Theta})$ to obtain the formamides.
- S.J. Benkovic, <u>Ann. Rev. Biochem.</u>, <u>49</u>, 227 (1980); and S.J. Benkovic, <u>Acc. Chem. Res.</u>, <u>11</u>, 314 (1978).

Received, 8th October, 1980