2-AZABICYCLO[3.2.0]HEPTANE-3,4-DIONES (3): LEWIS ACID CATALYSED RING EXPANSION OF 3-ETHOXY-Δ²-AZABICYCLO[3.2.0]HEPTAN-4-ONES: SYNTHESIS OF 2-ETHOXY-3-AZATROPONES¹

Takehiro Sano*, Yoshie Horiguchi, and Suetaka Kambe Showa College of Pharmaceutical Sciences, Setagaya-Ku, Tokyo 154, Japan. Yoshisuke Tsuda Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa 920, Japan.

Treatment of 2-azabicyclo[3.2.0]heptane-3,4-dione imidic ester $(\frac{6}{2})$ with tin(IV) chloride gave the dihydroazatropolone 2-ethyl ethers $(\frac{7}{2})$ in moderate yields which were also obtained by reaction of dihydroazatropolones (2) with Meerwein reagent. DDQ oxidation of $\frac{7}{2}$ gave 2-ethoxy-3-azatropones ($\frac{8}{2}$), which rearranged, on treatment with water, into ethyl pyridine 2-carboxylate ($\frac{10}{2}$). Spectroscopic data of azatropolone 2-ethyl ethers were also described.

For an azatropolone two alkyl ethers, <u>A</u> and <u>B</u>, are possible. Recently, we reported base catalyzed ring expansion of 2-azabicyclo[3.2.0]heptane-3,4-diones (<u>1</u>) to dihydroazatropolones (<u>2</u>) which on methylation followed by dehydrogenation affoded 7-methoxy-2-azatropone (<u>4</u>)² (type A). Methylation of 3-azatropolones (<u>5</u>) produced only the same ethers (<u>4</u>). Thus, the corresponding 2-alkyl ethers (type B) are hitherto unknown. Here we report the unequivocal synthesis of the 2-ethyl ethers, via Lewis acid catalysed ring expansion of the imidic esters of 2-azabicyclo[3.2.0] heptane-3,4-diones.

The imidic esters $(g_{a,c})$ were prepared from $(l_{a,c})^{3,4}$ in 65-89% yield with excess Meerwein reagent in CH₂Cl₂ at room temperature and the structures were confirmed spectroscopically.⁵ The imidic esters (6), when treated overnight with SnCl₄ (1.5 mol eq.) in CH₂Cl₂ at room temperature, gave the dihydroazatropolone 2-ethyl ethers (7) in moderate yields. The spectral data⁵ and the following transformations established their structures. They were hydrolysed by 5% HCl in tetrahydrofuran (1:1) to the known dihydroazatropolones (2) which on treatment with Meerwein reagent yield the 2-ethyl ethers identical with the compounds obtained above.

Interestingly, the 2-azabicyclo[3.2.0]heptane-3,4-diones (1) were not affected under similar acidic condition (SnCl₄ in CH₂Cl₂ at r.t.), and the imidic esters were stable to base. We therefore assume that the reaction of <u>6</u> proceeds through a cationic intermediate <u>9</u>.

DDQ oxidation of 2 to the 2-ethoxy-3-azatropone (8) was achieved more readily than that of 2 to 5 or that of 3 to 4. Thus a mixture of 7 and DDQ (1.3 mol eq.) in benzene was heated in a sealed tube, and the resulted product was purified by rapid chromatography on SiO₂ to give the 2-ethoxy-3-azatropone (8), in satisfactory yield. Attempt to direct preparation of 8b from 5b with Meerwein reagent was unsuccessful, only a complex mixture being obtained.

All 2-ethoxy-3-azatropones (8) prepared above were yellow gum and had $\lambda \max$ around 370~400 nm in their electronic spectra. The maximum is red-shifted relative to the corresponding 3-azatropolones (5) and 7-methoxy-2-azatropones (4)² (see Fig 1).

Table 1. Preparation of Dihydroazatropolone 2-Ethyl Ethers (7) and 2-Ethoxy-3-Azatropones (8).

Dihydroazatropolone 2-Ethyl Ether(7)			2-Ethoxy-3-Azatropone (8)				
Yield (%)			Condition				
R	from 6	from 2	m.p.	temp.	time	Yield (8)
a: ph	69	94	114-115°	105°	8 min.	77	
b: OEt	12 ^{a)}	65	yellow gum	25°	spontaneous	43	
c: OAc	43	82	73- 75°	110°	20 min.	60	
d: H		50	colorless gum	25°	1~2 min.	82	

a) 7b was vulnerable to air oxidation

Table 2. Spectral Data of 2-Ethoxy-3-Azatropo	nes (8)	
---	---------	--

NMR(δ,ppm)									
Comp.	IR (cm ⁻⁺)	C6-H	Сэ-Н	UV Adı	oxane max (ε)				
8a : ∼	1720 1655 1620	8.17(s)		240 349 398	(21,200) (9,800) (8,600)				
8b: ∼	1723 1660 1640	8.00(s)		247 355 395	(10,600) (5,100) (5,300)				
8c ∶ ∼	1765 1725 1660 1620	7.88(s)		225 258sh 345 385sh	(11,500) (9,500) (7,300) (6,100)				
8a : ∼	1725 1660 1620	8.03 (d, J=10 Hz)	6.90 (d, J=10 Hz)	240 258sh 370	(10,400) (9.000) (12,500)				

The 2-ethoxy-3-azatropones, similar to the 3-azatropolones, were unstable in aqueous solvent. When $\frac{8}{2}$ was treated with silica gel-H₂O or heated in aqueous acetone in presence of catalytic amount of sodium acetate, it quantitatively changed into the ethyl pyridine 2-carboxylate (10)⁵, identical with that obtained on treatment of 2 or 4 with ethanol⁶, no pyridine 2-carboxylic acid being formed. The conversion of 8 to 10 is explained by hydration to -C=N- double bond, benzilic acid type rearrangement followed by dehydration, thus supporting our proposed mechanism of an azatropolone to pyridine 2-carboxylate.²

References and Note

- 1. Dioxopyrrolines XVII, Part XVI: T. Sano, Y. Horiguchi, and Y. Tsuda, <u>Heterocycles</u>, in press.
- 2. T. Sano, Y. Horiguchi and Y. Tsuda, Heterocycles, 1979, 12, 1427.
- 3. T. Sano and Y. Tsuda, Heterocycles, 1976, 4, 1229.
- 4. see Part XVI.
- 5. <u>6a</u>: mp.137-139°; IR: 1760, 1740, 1640 cm⁻¹; NMR: δ 2.38(1H, dd, J=6, 4 Hz, C₆-H), 3.58(1H, dd, J=4, 6 Hz, C₆-H), 3.78(1H, t, J=6 Hz, C₇-H).
 - 6b: mp.68-71°; IR: 1770, 1760, 1735 cm⁻¹; NMR: δ l.93(lH, dd, J=14, 5 Hz, C₆-H), 3.37(lH, dd, J=14, 8 Hz, C₆-H), 4.71(lH, dd, J=5, 8 Hz, C₇-H).
 - 6c: mp.106-108°; IR: 1759, 1750, 1630 cm⁻¹; NMR: 6 2.05 (1H, dd, J=14, 5 Hz, C₆-H), 3.57 (1H, dd, J=14, 9 Hz, C₆-H), 5.85 (1H, dd, J=5, 9 Hz, C₇-H).
 - 7a: IR: 1665, 1630, 1600 cm⁻¹; NMR: δ 2.90(2H, s, C₅-H); λ^{dioxane} 234(ϵ 20,600), 268(ϵ 17,800), 345sh(ϵ 2,100)nm.
 - 7b: IR: 1730, 1660, 1620 cm⁻¹; NMR: δ 2.90(2H, s, C₅-H); λ^{dioxane} 255sh(ϵ 10,700) nm.
 - 7c: IR: 1765, 1660, 1630 cm⁻¹; NMR: δ 2.97(2H, s, C₅-H); $\lambda^{d_{1}} \max^{\lambda} 228 \text{sh}(\epsilon 12,000)$, 253(ϵ 16,500), 335sh(ϵ 1,500)nm.
 - 7d: IR: 1658, 1620 cm⁻¹; NMR: δ 2.68(2H, d, J=7 Hz, C₅-H), 5.85(1H, t, J=7 Hz, C₅-H); $\lambda^{d_{1}} \max^{d_{2}} 223(\epsilon 13,600)$, 258($\epsilon 17,300$), 335sh($\epsilon 1,300$)nm.
 - 10b: mp.84-85°; IR: 1745, 1725 cm⁻¹; NMR: δ 7.57(1H, s, C₄-H); $\lambda^{\text{E}_{\text{max}}^{\text{E}}}$ 239(ϵ 14,800), 264sh(ϵ 10,100), 315(ϵ 12,500)nm.
 - 10c: gum; IR: 1765, 1725, 1600 cm⁻¹; NMR: δ 8.0(1H, s, C₄-H); λ^{Emax} 262(ϵ 9,500), 293(ϵ 10,600)nm.
 - 10d: gum; IR: 1740, 1730 cm⁻¹; NMR: δ 8.28(1H, d, J=9 Hz, C₅-H), 7.82(1H, d, J=9 Hz, C₄-H); $\lambda^{\text{EtOH}}_{\text{max}}$ 268sh(ϵ 15,000), 290(ϵ 18,900)nm.
- Y. Tsuda, N. Kaneda, T. Sano, Y. Horiguchi, and Y. Litaka, <u>Heterocycles</u>, 1979, 12, 1423.

Received, 20th November, 1980