
STRUCTURES OF MONTRIFOLINE AND DELBINE: TWO NEW FUROQUINOLINE ALKALOIDS FROM MONNIERIA TRIFOLIA L. J. Bhattacharyya* and Leila M. Serur¹ Laboratorio de Tecnologia Farmaceutica, Universidade Federal da Paraíba, 58.000 - João Pessoa, Paraiba, Brazil <u>Abstract</u>: Two novel furoquinoline alkaloids were isolated from <u>Monnieria trifolia</u> and their structures were determined on the basis of spectral characteristics and chemical transformation.

<u>Monnieria trifolia</u> L. (N.O. Rutaceae) popularly known as "Alfavaca-de-cobra; is a herb which grows throughout northeastern Brazil. The leaves of <u>M. trifolia</u> has been used in the popular medicine as a febrifuge, diaphoratic, antipyretic and antiinflammatory agent². The well known rutaceous alkaloids, arborinine³, skimmianine⁴, and dictamnine⁵ have been reported earlier from this plant. The basic fraction of the hexane extract of the leaves of <u>M</u>, <u>trifolia</u>, upon column chromatography, TLC and crystallization yielded two new alkaloids, montrifoline, $C_{18}H_{21}NO_6$ (M⁺ 347), mp 191-193^o and delbine, $C_{13}H_{11}NO_4$ (M⁺ 245)⁶, mp 229-231^o, in addition to the alkaloids already reported. In this communication, we wish to report the structures of montrifoline and delbine as (<u>1</u>) and (<u>2</u>) respectively, based on spectral evidence and chemical transformation. Although a C₅-unit attached at various positions of the ring system has been encountered rather frequently in furoquinolines⁷, montrifoline represents the first example of the occurrence of such an unit at C-6.

(1) $R = -CH_2CH(OH)C(OH)(CH_3)_2$; $R_1 = CH_3$ (2) R = H; $R_1 = CH_3$ (3) $R = CH_3$; $R_1 = -CH_2CH(OH)C(OH)(CH_3)_2$ (4) $R = R_1 = CH_3$ (5) $R = CH_3$; $R_1 = H$ The UV spectrum of montrifoline in methanol showed $\lambda \max$ (log ε) at 244(4.68), 252(4.73), 309(3.99), 321(3.99), and 333(3.82)nm. The IR spectrum of montrifoline in KBr showed peaks at 3350(OH), 3130(Ar-H), 1630, 1590(Ar), 1268, 1210, 845 and 820 cm^{-1} . The UV and the IR spectra of montrifoline are typical^{8,9} of furoquinolines, in general, and of kokusaginine, in particular. In addition to the molecular ion peak at 347, the MS of montrifoline showed important fragmentations at m/e 332 (M-15), 304(M-43), 288(M-59), 258(M-89), and the parent peak at 245(M-102) characteristic of furoquinolines having a OCH₂CH(OH)C(OH)(CH₃)₂ molety.

The ¹H NMR spectrum of montrifoline in DMSO-d₆ with TMS as internal standard showed signals at 1.26(6H, <u>s</u>, broadened at the top, two C-CH₃), 3.96(3H, <u>s</u>, Ar-OCH₃) and 4.46(3H, <u>s</u>, Ar-OCH₃), two characteristic proton doublets at 7.28(1H, J=3Hz) and 7.82(1H, J=3Hz) and two <u>para</u> aromatic proton singlets at 7.28 and 7.53 ppm. The spectrum also showed multiplets which integrated for two protons around 4,30 and for one proton around 4,00 ppm overlapped by the two singlets for two OCH₃ groups. The proton doublets at 7.28 and 7.82 ppm are characteristic of α and β furan protons as in the furo(2,3-b) quinoline system. The OCH₃ signal at 4.46 ppm is certainly due to the C-4-OCH₃ in furoquinoline system as in dictamnine¹⁰. Therefore, all the above evidence can only by accomodated in the alternative structures (<u>1</u>) and (<u>3</u>) for montrifoline. However, (<u>3</u>) represents evolatine¹¹, an alkaloid isolated from the Australian Rutaceous plant <u>Evodia alata</u>. Evolatine has properties similar but not same with those of montrifoline. Therefore, montrifoline was confirmed by its chemical transformation to delbine (vide infra).

The UV absorption maxima of delbine in methanol showed λ max (log ε) at 241 (4.17), 250 (4.19), 310 (3.51), 326 (3.50), 336 (3.88) nm. The IR spectrum in KBr showed important peaks at 3400-3100 (broad, OH), 3165 (Ar-H), 1623, 1585 (Ar), 1265, 1210, 1088, 1080, 865 and 850 cm⁻¹ indicative of a furoquinoline system.

The MS of delbine showed, in addition to the molecular ion peak at m/e 245 (100%) significant fragments at m/e 230 (M-15) and 202(M-43), characteristic of the furoquinoline alkaloids¹². The ¹H NMR spectrum of delbine in DMSO-d₆ with TMS as internal standard showed signals at 3.95(3H, \underline{s} , Ar-OCH₃) and 4.37(3H, \underline{s} , Ar-OCH₃), two typical doublets at 7.32(1H, J=3Hz) and 7.90(1H J=3Hz) for the α and β furan protons of the furo(2,3-b)quinoline system, two para aromatic proton singlets at 7.29 and 7.48 and a broad signal at 9.60 ppm for a OH proton which disappeared upon addition of D₂0. Methylation of delbine with CH₂N₂ gave 6,7-di-

methoxydictamnine (kokusaginine, 4). As the downfield OCH₃ signal at 4.37 ppm is definitely due to C-4-OCH₃¹⁰, delbine must be either 6-hydroxy-7-methoxydictamnine (2) or 7-hydroxy-6-methoxydictamnine (5). The later compound (5), heliparvifoline (lit. mp 245-47°) was isolated¹³ from a South American Rutaceae plant, <u>Helietta</u> <u>parvifolia</u> and it was also prepared¹¹ from evolatine by alkaline fusion. Delbine was found to be quite different (mp, TLC and IR) from heliparvifoline and the mmp¹⁴ was depressed. Also, alkaline fusion of montrifoline gave delbine under identical condition in which evolatine furnished heliparvifoline¹¹. Therefore, delbine must be represented by (2) and, consequently, montrifoline must have structure (1).

Acknowledgements

Thanks to Prof. Kenneth K. Andersen, Department of Chemistry, University of New Hampshire, Durham, NH, U.S.A., for the MS of montrifoline. We also thank Maria de Fátima Agra for identification of the plant material and Dulce Gonçalves de Oliveira and Juan Alfonso Dowling for technical assistance. We are grateful to Prof. Delby Fernandes de Medeiros, the Director, for his interest and encouragement.

References

- Present Address: Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceará, Fortaleza, CE, Brasil.
- 2. M. Pio Correa, 'Dicionário das Plantas úteis do Brasil e das exóticas cultivas', Imprensa Nacional, Rio de Janeiro, 1926, Vol. I, p. 64.
- A Cavé, J.I. Ramos de Souza, and R.R. Paris, <u>Planta Med. Phytother</u>, 1971, <u>4</u>, 327.
- 4. I. Fourasté, J. Gleye, and E. Stanislas, Planta Med. Phytother, 1973, 7, 225.
- 5. I. Fouraste and E. Stanislas, Planta Medica, 1969, 17, 361
- 6. Satisfactory elementary analyses were obtained for the new compounds.
- M. F. Grundon, 'The Alkaloids', eds. by R.H.F. Manske and R.G.A. Rodrigo, Academic Press, New York, 1979, Vol. 17, p. 105.
- 8. A. W. Sangster and K.L. Stuart, Chem. Rev., 1965, 65, 69.
- 9. L. H. Briggs and L.D. Colebrook, J. Chem. Soc., 1960, 2458.
- 10. A. V. Robertson, Austr. J. Chem., 1963, 16, 451.
- 11. R. J. Gell, G.K. Hughes, and E. Ritchie, Austr. J. Chem., 1955, 8, 114.
- 12. D. N. Clusgton and D.B. Maclean, Canad. J. Chem., 1963, 43, 2516.

- P. T. O. Chang, G.H. Aynilian, G.A. Cordell, M. Tin-Wa, H.H.S Fong, R.E. Perdue, Jr., and N.R. Farnsworth, J. Pharm. Sci., 1976, <u>65</u>, 561.
- 14. Determined with an authentic sample of heliparvifoline supplied generously by Dr. G.A. Cordell, Professor of Pharmacognosy, Department of Pharmacognosy and Pharmacology, University of Illinois at the Medical Center, Chicago, Illinois, 60612, U.S.A., which is gratefully acknowledged.

Received, 5th December, 1980