TOTAL SYNTHESES OF (±)-CHANOCLAVINE I AND (±)-DIHYDROSETOCLAVINE

Mitsutaka Natsume* and Hideaki Muratake Research Foundation Itsuu Laboratory Tamagawa 2-28-10, Setagaya-ku, Tokyo 158, Japan

Abstract: Syntheses of the title ergot alkaloids & and $\frac{1}{2}$ *& were achieved* **from** *the* **common** *intermediate 2, obtained by a series* **of** *reactions including our synthetic method* **of** *4-atkytindotes.*

In the previous three papers, $1, 2, 3$ we reported (i) a synthetic method of functionalized 4-alkylindoles such as \downarrow , (ii) its transformation into a tricyclic indole derivative *2,* which is expected to be a common intermediate for the synthesis of ergot alkaloids, and (iii) the first synthesis of 6.7 -secoagroclavine (2) from *2* by way of a N-protected ketone derivative *2. 2* is an important compound for the synthesis of 6,7-secoergoline type of alkaloids and this time, a synthesis of (\pm)-chanoclavine I⁴ ($\overline{2}$) was carried out as shown in Chart 1.^{5,6}

Owing to the insoluble character of chanoclavine I in most organic solvents, identification [TLC, 1 H NMR (CDCl₃), and IR (CHCl₃)] was performed at the stage of the compound l, \emptyset . Natural $\overline{\lambda}$ was treated with ClCOOCH₂Ph in the presence of Et₃N and the resulting diacyl derivative was partially hydrolyzed⁷ to an N-benzyloxycarbonyl alcohol, which was acetylated to afford Q of the natural origin. Both natural and synthetic 10 's were treated with warm diluted alkali, 7 followed by cleavage of the N-protecting group, and the recovered natural *2* was identical with 8 chanoclavine I [mixed mp, IR 1KBr)l. Synthetic *2* exhibited the same MS patern as natural ξ , thus completing a total synthesis of $(±) - \xi$.

 $-375-$

 a Ph₃P=CH₂, THF, 0°, 46% (78%[†]). b OsO₄, Et₂O-Py, 0°+rt, 70% (80%[†]). **c** Ac20, Py, quant. d p-TsOH, PhH, reflux. **2:** 22%. **&Q:** 25%. **e** (il 2% KOH in t-BuOH-H₂O (3:1), 55-60°, (ii) Na, liq. NH₃-THF. *ca*. 80% yield for both synthetic and natural compounds. f (i) ClCOOCH₂Ph, CH₂Cl₂-Py, Et₃N, (ii) 3.5% KOH in t-BuOH-H₂O (3:1), 55-60°, (iii) Ac₂O, Py.

t Yield calculated on the basis of converted starting material.

Chart 1

Construction of the tetracyclic ergoline skeleton was next attempted by assuming an intramolecular cyclization from **&J** to **&z,** if one could achieve the introduction of an aldehyde equivalent into the ketone group of **A&.** When R equaled to the benzyl group, removal of the N-protecting group from $\frac{1}{2}$ by the catalytic hydrogenation would produce $\frac{1}{4}$ at first and then end up in the formation of a stable D ring as $\frac{1}{k}$, whereas, in the case of R=Me, any reaction on $\frac{1}{k}$ might involve the participation of an equilibrium form 12 to afford ring-opened derivatives as by-products. Based on this consideration, $\lambda \lambda e^{5}$ and $\lambda \lambda b^{5}$ were synthesized from λ (Chart 2) and submitted to the one carbon elongation reaction producing an aldehyde function. **⁹**

A satisfactory result was obtained by the condensation of tosylmethylisocyanide (TOSMIC) with $\frac{11}{24}$ using TlOEt as a base¹⁰ and subsequent treatment with p-TsOH in

a (i) LiAlH₄, THF, reflux, (ii) ClCOOCH₂Ph, CH₂Cl₂, Et₃N; L₂ba: 28%, L₂be: 33%. b Me₂CO, p-TsOH, rt; 11g: 85%, 11p: 85%. c p-TsCH₂NC, T1OEt, EtOH-DME (4:1), rt. d p-TSOH, DME-H₂O (6:1), rt. e H₂, 10% Pd-C, CH₂O-H₂O, MeOH. e' (i) H_2 , 10% Pd-C, MeOH, (ii) 5% KOH in MeOH-H₂O (14:1), reflux, (iii) H_2 , 10% Pd-C, CH_2O-H_2O , MeOH.

Chart 2

DME-H₂O afforded $\frac{1}{k}$ [MS m/e : 419 (M⁺), 401 (M⁺-H₂O), 356 (M⁺-H₂O-NH₂CHO); ¹H NMR $(CDCL₃, 60°)^{11}$ 6: 1.45 (\geq C-Me), 7.93 ($>$ N-CHO)] and \downarrow R_p [MS m/e : 419 (M⁺), 401 (M⁺- H_2O); ¹H NMR (CDC1₃, 60°) 6: 1.20 ($\frac{3}{2}$ C-Me), 8.35 ($>N-CHO$)], which were hydrogenated over 10% Pd-C in the presence of CH₂O. Formation of $(±)$ - $\frac{19b}{100}$ [mp 88-91°, MS m/e : 256 (M^+), ${}^{1}H$ NMR (CDCl₃) 6: 1.34 (s, Me), 2.19 (br. s, OH), 2.39 (s, N-Me), 6.88 (br. s, H-2), 7.96 (br., indole NH)] and (\pm) - $2\&0$ ⁸ Imp 217-219°, MS m/e : 256 (M^+) , ¹H NMR (CDC1₃-CD₃OD) δ : 1.19 (s, Me), 2.57 (s, N-Me)] was observed in 33% and 20% yields, respectively, from LLD. The structure of 19b was confirmed by comparison with a hydrogenation product of setoclavine (vide infra).

The same series of reaction were applied to $\frac{1}{k}$. A mixture of the tetracyclic derivatives $\frac{1}{6}$ and $\frac{1}{6}$ was formed analogously, but the catalytic hydrogenation required the prolonged reaction time, and yet 2λ [¹H NMR (DMSO-d₆) 6: 1.11 ($\frac{1}{6}$ C-Me), 8.12 and 8.15 (-NHCHO), 10.58 (indole NH)] was isolated in addition to (t) dihydroisosetoclavine^{8,12} (20₂) [mp 232-236°, MS m/e : 256 (M⁺), ¹H NMR (CDCl₃-CD₃OD) δ : 1.50 (s, Me), 2.43 (s, N-Me)] in 16% yield from $\frac{1}{6}$. $\frac{2}{6}$ was once treated with 5% KOH in MeOH-H₂O (formation of 22), followed by the catalytic hydrogenation in the presence of CH₂O. (\pm)-Dihydrosetoclavine⁸ ($\frac{1}{2}$) [mp 252-256°, MS m/e : 256 (M⁺), ¹H NMR (DMSO-d_c) δ : 1.18 (s, Me), 2.37 (s, N-Me), 10.63 $(br., indole NH)$] was obtained in 12% yield from $l.h.$

In order to confirm the structures of synthetic λ 9g and λ 9g, preparation of the authentic samples was carried out from agroclavine $(2,3)$. $2,3$ was converted to setoclavine¹³ (24) according to the procedure described in the literature^{4a,14} and the catalytic hydrogenation¹⁵ of 24 yielded dihydrosetoclavine^{13,16} ($19a$) (438) and $\frac{1}{2}$ (7%). Identification of (1)- $\frac{1}{2}$ g with dihydrosetoclavine was performed by TLC (10% MeOH-CHCl₃, Rf=0.2), MS, ¹H NMR (CDCl₃-CD₃OD, DMSO-d₆), and ¹³C NMR (DMSO- d_{ϵ}) spectra.

Acknowledgement - Authors' thanks are due to Dr. S. Ohmomo of the University of Tsukuba for his exceptional cooperation in providing us with precious samples of chanoclavine I and agroclavine. A part of this work was supported by Grant-in-Aid for special Project Research from the Ministry of Education, Science and Culture, which is gratefully acknowledged.

REFERENCES AND NOTES

1. M. Natsume and H. Muratake, *Tetrahedron Lett.*, 3477 (1979).

 $-378-$

- 2. M. Natsume and H. Muratake, *Heterocyctes,* 14, 445 (1980).
- 3. M. Natsume and H. Muratake, *Heterocyctes,* 14, 1101 (1980).
- 4. (a) A. Brack, A. Hofmann, R. Brunner, and H. Kobel, *HeZv. Chim. Acta.* 40, 1358 (1957). (b) Three total syntheses of chanoclavine I were reported: H. Plieninger and D. Schmalz, *Chem. Ber.*, 109, 2140 (1976); A.P. Kozikowski and H.
ninger and D. Schmalz, *Chem. Ber.*, 109, 2140 (1976); A.P. Kozikowski and H. Ishida, J. *Am. Chem.* Soc., 102, 4265 (1980); W. Oppolzer and J.I. Grayson, *Hetv. Chim. Acta,* **63,** 1706 (1980).
- 5. Spectral data fully supported the structures.
- 6. Preliminary experiments using the corresponding 5.10-cis compound: Application of a modified Shapiro's olefin synthesis of tosylhydrazones [P.C. Traas, H. Boelens, and H.J. Takken, *Tetrahedron Lett.,* 2287 (1976)l was found to be fruitless; and thermolysis of a-epoxysulfoxides [V. Reutrakul and W. Kanghae, *Tetrahedron Lett.,* 1377 (1977)l afforded a low yield of an inseparable mixture of α , β -unsaturated aldehydes.
- 7. Usage of MeOH instead of t-BuOH has a possibility of changing in part N-COO- CH_2Ph to N-COOMe.
- 8. Satisfactory results of high resolution mass spectra were obtained for these compounds.
- 9. Addition of Ph₃P=CHOMe or MeNO₂ as well as the Darzen reaction gave unsuccessful results, see Ref. 3.
- 10. O.H. Oldenziel and A.W. van Leusen, *Tetrahedron Lett.,* 163. 167 (1974).
- 11. All H NMR spectra were taken at 90 MHz.
- 12. **This** material is not isolated from the nature but corresponds to a dihydro derivative of isosetoclavine.
- 13. The material exhibited the same IR spectrum as reported in the literature.^{4a}
- 14. S. Yamatadani and M. Abe, *Butt. Agr. Chem.* **soc.** *Japan,* 19, 94 (19551.
- 15. H. Tscherter and H. Hauth, *Helv. Chim. Acta*, 57, 113 (1974).
- 16. This alkaloid was first isolated from *Ctaviceps paspati* Stevens *et* Hall. 15

Received, 8th December, 1980