Cycloaddition of Thiazolo^[3,2-a]BENZIMIDAZOLE and Imidazo^[2,1-b]BENZO-THIAZOLE WITH METHYL PROPIOLATE; FORMATION OF THIAZOLO^[3,2-a]^[1,5]-BENZODIAZEPINE AND ^[1,4]DIAZEPINO^[7,1-b]BENZOTHIAZOLE¹

Norıtaka Abe and Tarozaemon Nishiwakı Department of Chemistry, Faculty of Sciences, Yamaguchi University, Yamaguchi 753, Japan

<u>Abstract</u> - 3-Methylthiazolo[3,2-a]benzımidazole and 2-methylimidazo[2,1-b]benzothiazole, respectively, react with methyl propiolate to give 1:2-adducts which are characterized as methyl (\underline{Z})-11-(methoxycarbonyl)-3-methyl-10-thiazolo[3,2-a][1,5]benzodiazepinacrylate and methyl (\underline{Z})-5-(methoxycarbonyl)-2-methyl-4-[1,4]diazepino[7,1-b]benzothiazolacrylate.

Cycloadditions of aromatic azapentalenes had received no attention² before we reported the reactions of imidazo[2,1-b]thiazoles, 3-methylthiazolo[3,2-a]benzimidazole (1), and 2-methylimidazo[2,1-b]benzothiazole (2) with dimethyl acetylenedicarboxylate (DMAD),³ which gave a product arising by loss of a nitrile from a 1:1cycloadduct or a thiophene from a 1:2-cycloadduct. Our subsequent studies have revealed that the reactions of 1 or 2 with methyl propiolate (MP) follow a course completely different from that of DMAD and afford 1:2-adducts possessing novel heterocyclic ring systems.

When 1 was heated under reflux with an excess of MP in acetonitrile for 20 h, a 1:2adduct⁴ was isolated in 39% yield and characterized as methyl (\underline{Z})-ll-(methoxycarbonyl)-3-methyl-10-thiazolo[3,2-a][1,5]benzodiazepinacrylate ($_{\mathcal{N}}^{3}$) [orange needles (from benzene-cyclohexane), mp 185-186°C] from its spectral properties including mass [m/e 356 (M⁺)], i.r. [ν_{max} . (nujol) 1710 (C=O) and 960 cm⁻¹ [(\underline{Z})-CH=CH]}, and u.v. [λ_{max} . (EtOH) 245 (log ε 4.37), 316 (4.19), 360 (4.14), and 430 nm (4.14)]. Its ¹H NMR spectrum (CDCl₃) showed AB doublets characteristic of (\underline{Z})-disposed vinyl protons at δ 6.07 and 7.75 (J 16 Hz). The proton at δ 5.72 to be assigned to the H-2 was long-range coupled with the C(3)-Me protons at δ 2.68 (J 0.5 Hz). Other signals are seen at δ 3.78 (3H, s, CO₂Me), 3.96 (3H, s, CO₂Me), and 7.15-7.9 (4H, m, H-5,6,7,8).

Similarly, 2 gave methyl (<u>Z</u>)-5-(methoxycarbonyl)-2-methyl-4-[1,4]diazepino[7,1-b]benzothiazolacrylate (<u>4</u>)⁴ in 81% yield after heating with an excess of MP in acetonitrile for 8 h [<u>4</u>: yellow prisms (from ethanol-benzene), mp 189-190°C, mass [m/e 356 (M⁺)], i.r. [ν_{max} . (nujol) 1720 and 1700 (C=O) and 975 cm⁻¹ [(<u>Z</u>)-CH=CH)], u.v. [λ_{max} . (CHCl₃) 261^{Sh} (log ε 4.20), 295 (4.21), 320 (4.13), 337 (4.08), and 398 nm (4.45)], ¹H NMR [δ (CDCl₃) 2.28 (3H, bs, Me), 3.78 (3H, s, CO₂Me), 3.88 (3H, s, CO₂Me), 6.02 (1H, d, J 16 Hz, vinyl-H), 7.28 (1H, bs, H-1), 7.2-7.5 (4H, m, H-7,8, 9,10), 7.78 (1H, d, J 16 Hz, vinyl-H)]].

A plausible mechanism for the reaction of 1 with MP is shown in the Scheme. The reaction proceeds <u>via</u> a dipolar cycloaddition with MP to form intermediates, 5 and 6, successively, and a further reaction of 5 with MP accompanied by a ring-enlargement would lead to the formation of 3. The reactions of 1 and 2 with DMAD were found to proceed through a 1,4-dipolar cycloaddition.³ However, a reaction of the intermediate 5 with an additional molecule of MP is impossible owing to the lower reactivity of the latter⁵ and hence the intermediate 5 would be stabilized by an intramolecular cyclization.

References and Note

- 1. Part 3 of Studies on Heteropentalenes. Part 2 , see Ref. 3.
- J. Elguero, R. M. Claramunt, and A. J. H. Summers, <u>Adv. Heterocyclic Chem.</u>, 1978, 22, 183.
- 3. N. Abe, T. Nishiwaki, and N. Komoto, Bull. Chem. Soc. Jpn., 1980, 53, 3308.
- 4. Satisfactory elemental analyses were obtained for all new compounds.
- J. I. Dickstein and S. I. Miller, '<u>The Chemistry of the Carbon-carbon Triple</u> Bond', eds. by S. Patai, John Wiley & Sons, New York, 1978, chap. 19.

Received, 9th December, 1980