A NEW SYNTHESIS OF 1,4-DIHYDRO-3(2H)-ISOQUINOLINONES BY THE CYCLIZATION OF N-HYDROXYMETHYLARYLACETAMIDES¹

Yasuo Watanabe^{*}, Yasuko Kamochi, and Tokumitsu Miyazaki Daiichi College of Pharmaceutical Sciences 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815, Japan

Abstract — A new and facile synthesis of 1,4-dihydro-3(2H)-isoquinolinones by the intramolecular amidomethylation with pyrophosphoric acid is described.

Carbonium-immonium ion intermediates, $[\text{RCONHCH}_2 \leftrightarrow \text{RCONH=CH}_2]$ formed by the acid-catalyzed dehydroxylation of the corresponding N-hydroxymethylamides are effective electrophiles in the intermolecular condensation², and the introduction of the amidomethyl group into aromatic rings in the presence of sulfuric acid (H_2SO_4) is known widely as the Tscherniac-Einhorn reaction².

Although 1,4-dihydro-3(2H)-isoquinolinone (2a) and its substituted derivatives (2b and 2c) were obtained by various methods³, there is no example prepared by the intramolecular amidomethylation of the corresponding N-hydroxymethylamides. We now wish to report a new and facile synthesis of 1,4-dihydro-3(2H)-isoquino-linones (2) by the intramolecular condensation of N-hydroxymethylarylacetamides ($\underline{1}$)^{4a}, ^b with some acid catalysts and a conversion of the dimers (3) produced in this reaction into the monomers (2).

A mixture of N-hydroxymethylphenylacetamide (<u>la</u>) (one part) and pyrophosphoric acid ($H_4P_2O_7$) (ten parts) was heated at 140-160° for 1 h and the reaction product was treated with water to give 1,4-dihydro-3(2H)-isoquinolinone (<u>2a</u>) (in 76.5% yield). The same condensation also occurred in using other phosphoric acids as follows: used acid (temp., reaction time) and yield of (<u>2a</u>); polyphosphoric acid (PPA) (140-160°, 1 h) 56.7%, 85% phosphoric acid (H_3PO_4) (140-160°, 1 h) 27.7%, phosphorus pentoxide (P_2O_5) (in refluxing CHCl₃, 1 h) 3.3%, and (in refluxing $C_2H_2Cl_4$, 1 h) 14.4%.

When $(\underline{1a})$ was allowed to stand with $H_4P_2O_7$ or PPA at room temp. for 14 h, the reaction product was not $(\underline{2a})$, but an unseparable mixture of gummy polymers.

-609-

Treatment of <u>la</u> with sulfuric acid, which was applied mostly as an amidomethylating catalyst in the Tscherniac-Einhorn reaction², also leads to a mixture of polymers. A mixture of disubstituted amide, *viz*. 3,4-dimethoxy- or 3,4-methylenedioxy-N-hydroxymethylphenylacetamide (<u>lb</u> or <u>lc</u>)^{4b} and $H_4P_2O_7$ was heated at 100° for 1 h, followed by treating with water to deposit crystals of the new dimer (<u>3b</u> in 15.5% yield or <u>3c</u> in 29.8% yield) of which structural elucidation is shown in the Notes⁵. When each filtrate was shaken firstly with CH₂Cl₂ and with AcOC₂H₅ finally, so isolable second crop from the combined solution was the expected 1,4-dihydro-3(2H)-isoquinolinone (<u>2b</u> in 12.9% yield or <u>3c</u> trace)^{3b}.

<u>a</u>: $R^1 = R^2 = H$ <u>b</u>: $R^1 = R^2 = OCH_3$ <u>c</u>: R^1 , $R^2 = OCH_2O$

Changing the reaction conditions in using $H_4P_2O_7$, the yields of 2 and 3 varied as follows: the yields of 2 and 3, (temp., reaction time); 2b, 4.0% and 3b, 93.3% (room temp., 14 h); 2c, trace and 3c, 92.7% (room temp., 14 h); 2b, 7.2% and 3b, 67.8% (60°, 1 h); 2c, trace and 3c, 60.0% (60°, 1 h).

The dimer (<u>3b</u> or <u>3c</u>) was pyrolyzed in a glass tube at 300-306°/20 torr to provide <u>2b</u> (80.0% yield) or <u>2c</u> (40.0% yield).

From above experimental result coupled with the spectral and analytical data⁵, these dimers seem reasonable to have the structures <u>3b</u> and <u>3c</u> formed by the bimolecular condensation of the same N-hydroxymethylamide.

Substitution with electron-donating groups at 3 and 4 positions on the aromatic ring in $\underline{1}$ is especially in favor of the twofold intermolecular condensation against the intramolecular one.

References and Notes

- Presented in part at the ACS/CSJ Chemical Congress, Honolulu, Hawaii, April 2, 1979, Abstracts of papers, part 2, ORGN 111.
- H. E. Zaugg and W. B. Martin, ''Organic Reactions'', ed. by R. Adams, John Wiley & Sons, Inc., New York, 1965, 14, pp. 52-267.
- 3. Of a number of preparations of 1,4-dihydro-3(2H)-isoquinolinone (2a) and its substituted derivatives, cited herein only the literatures concerning our present paper.
 - a) By the Beckmann rearrangement, R. E. Lyle and D. A. Walsh, Org. Prep. Proced., 1973, 5, 299.
 - b) By the reduction of the corresponding 3-isoquinolinones, N. J. McCorkindale and A. W. McCulloch, Tetrahedron, 1971, 27, 4653.
 - c) By the treatment of a mixture of arylacetonitrile or arylacetamide and aromatic aldehyde with PPA or TFA, J. Finkelstein and A. Brossi, J. Heterocyclic Chem., 1967, 4, 315; Z. Csűrös, G. Deák, I. Hoffmann, and A. Török-Kalmár, Acta Chim. Acad. Sci. Hung., 1969, 59, 119; ibid., 1969, 60, 177; ibid., 1976, 88, 87; E. Koltai, D. Bánfi, L. Hazai, and G. Deák, J. Label Comp. and Radiopharm., 1978, 15, 331.
 - d) By the condensation of the adduct of α,α-dimethylphenylacetamide and glyoxylic acid with methanesulfonic acid (MSA), and the cyclization of N-benzyl-bis(methoxycarbonylamino)acetamides with MSA, D. Ben-Ishai, N. Peled, and I. Sataty, Tetrahedron Letters, 1980, 21, 569.
- 4. a) R. D. Haworth, R. MacGillivray, and D. H. Peacock, J. Chem. Soc., 1950, 1493.
 - b) N-Hydroxymethyl-3,4-methylenedioxyphenylacetamide (<u>1c</u>) is the new compound ; mp 128-129°; IR (nujol) cm⁻¹, v_{max} 3270 (NH), 1630 (C=O); MS m/e, 209 (M⁺); Anal. C, H, N (calcd.) % 57.23(57.41), 5.73 (5.30), 6.60(6.70).
- 5. The 1,4-dihydro-3(2H)-isoquinolinones (<u>2b</u> and <u>2c</u>) were identical with the authentic samples by the alternative preparation according to the method of the literatures^{3b}. The structures of these new dimers (<u>3b</u> and <u>3c</u>) were elucidated as follows: <u>3b</u>, mp>300°; IR (nujol) cm⁻¹, v_{max} 3270 (NH), 1630 (C=O); MS m/e, M⁺ 414.1801 (C₂₂H₂₆N₂O₆=414.1790). <u>3c</u>, mp>300°; IR (nujol) cm⁻¹, v_{max} 3270 (NH), 1645 (C=O); MS m/e, M⁺ 382.1107 (C₂₀H₁₈N₂O₆=382.1164). Hydrolysis of <u>3b</u> and <u>3c</u> with boiling conc. HCl gave the lactamized products (<u>2b</u> and <u>2c</u>).

Received, 2nd September, 1980