THE MASS SPECTRA OF FURAN CHALCONE ANALOGUES Francesco P. Ballistreri, Giuseppe Musumarra and Salvatore Occhipinti[®] Istituto Dipartimentale di Chimica e Chimica Industriale, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy <u>Abstract</u> - The electron impact mass spectra of 14 furan chalcone analogues $(5-X-C_4H_2O-CH=CH-CO-C_6H_4-\underline{p}Y)$, X=H, Me; Y=OMe, Me, H, F, CI, CN, NO_2) are reported and the fragmentation pattern is discussed and compared to those of chalcones and their thiophene analogues. The mass spectral behaviour of ∞ , β -unsaturated cycloketones^{1,2}, styrylketones³, benzalacetones⁴ and substituted benzalacetophenones⁴⁻⁶ has been investigated. The mass spectrum of benzalacetophenone was first recorded by Beynon⁷: the major fragmentations of this compound were rationalised and found to be characteristic. Following recent studies on the mass spectra of some substituted thiophene chalcone analogues⁸, we here report the electron impact mass spectra at 70 eV of 14 substituted first chalcone analogues (series $\underline{1}$ and $\underline{2}$). Series X substituent $$\frac{1}{2}$$ H $_{2}$ CH $_{3}$ Y Substituent · OCH $_3$, CH $_3$, H, F, CI, CN, NO $_2$ Designation : \underline{a} \underline{b} \underline{c} \underline{d} \underline{e} \underline{f} \underline{g} The effect of the heteroatom and of X and Y substituents on ^{13}C chemical shifts of the terms in series $\underline{1}$ and $\underline{2}$ have been discussed 9 . Their ^{13}C NMR and IR spectra showed that the above compounds exist in the $\underline{\text{trans}}$ isomeric form 9 . The mass spectra of furan chalcone analogues in series $\underline{1}$ and $\underline{2}$ are listed in the Table. These compounds, under electron impact, are very stable being characterized by a high degree of conjugation and the molecular ions are always very intense, as already found for the corresponding thiophene chalcone analogues and for benzalacetophenones 4-6. The molecular ions for $\underline{1a}$, $\underline{1b}$ and $\underline{1d}$ perform the base peak, whereas for $\frac{1c}{1e-1g}$ the base peak is the substituted benzoyl cation $\begin{bmatrix} Y-C_6H_4-C0\end{bmatrix}^{+}$. In series $\underline{2}$ the base peak is the $\begin{bmatrix} M-CH_3\end{bmatrix}^{+}$ ion, except for $\underline{2a}$ where the molecular ion is also the base peak; the benzoyl cation shows lower intensity in this series. Inspection of the spectra reveals analogies with the fragmentation patterns of benzalacetophenones $^{4-6}$. We report below, as an example, the fragmentation pathway of $\underline{1c}$. The transitions substantiated by metastable peaks (directly observed in the 70 eV mass spectra) are indicated by an asterisk. $$\begin{bmatrix} M-1 \end{bmatrix}^{+} \xrightarrow{-R^{+}} \\ 0 \\ -c_{6}H_{5}^{+} \\ -c_{0} \\ -c_{6}H_{5}^{-} \\ -c_{0} \\ -d_{1}H_{10} \end{bmatrix}^{+} \\ -c_{1}H_{10}^{+} \\ -c_{2}H_{2} \\ -c_{1}H_{10}^{+} \\ -c_{1}H_{10}^{+} \\ -c_{1}H_{10}^{+} \\ -c_{2}H_{2} \\ -c_{1}H_{10}^{+} -c_{1}H_{10}^{+$$ ## EXPERIMENTAL $\frac{\text{Products}}{\text{Products}}$ - The syntheses and the physical properties of furan chalcone analogues in series 1 and 2 have been reported. Mass spectra - The mass spectra were recorded on a LKB 9000S spectrometer at 70 eV, with ion source temperature 250°C. The samples were introduced using the direct inlet probe technique. ## REFERENCES - 1. H. Budzikiewicz, C. Djerassi, and D.H. Williams, "Mass Spectrometry of Organic Compounds", Holden-Day, San Francisco, 1967, chapt. 3. - 2. C. Fenselau, W.G. Dauben, S.W. Shafter, and N.D. Vietmeyer, <u>J. Amer. Chem. Soc.</u>, $1969, \underline{91}, 112$. - 3. P.J. Smith, J.R. Dimmock, and W.G. Taylor, Can. J. Chem., 1972, 50, 871. - 4. Y. Itagakı, T. Kurosawa, S. Sasaki, C.-T.Chang, and F.-C.Chen, <u>Bull. Chem. Soc.</u> <u>Japan</u>, 1966, <u>39</u>, 538. - 5. C. Van de Sande, J.W. Serum, and M. Vandewalle, <u>Org. Mass Spectrom</u>., 1972, <u>6</u>, 1333. - 6. E. Rouvier, H. Medina, and A. Cambon, Org. Mass Spectrom., 1976, 11, 800. - J.H. Beynon, "Mass Spectrometry and its Applications to Organic Chemistry, Elsevier Publishing Company, Amsterdam, 1960, p. 270. - 8. A. Arcoria, F.P. Ballistreri, G. Musumarra, and S. Occhipinti, Org. Mass Spectrom., in press. - 9. G. Musumarra, and F.P. Ballistreri, Org. Magn. Res., in press. <u>Acknowledgements</u> We thank C.N.R. (Rome) for financial support. Table Characteristic peaks in the mass spectra of furan and 5-methylfuran chalcone analogues (series $\underline{1}$ and $\underline{2}$) \underline{a} . | | | | | 0 B | | | | | | |------------|----------------------------|---------------------------|--------------|---------------------------|-----------------------------|----------------------------|-------------|-------------|--------------| | Comp. | м ⁺ | M – 1 | M – Y | M-CO | Α | A-CO | В | B-CO | M-15 | | <u>1 a</u> | 228
(100) | 227
(7) | 197
(3) | 200
(6) | 135
(50) | 107
(5) | 121
(12) | 93
(2) | _ | | <u>1b</u> | 212
(100) | 211
(9) | 197
(6) | 184
(8) | 119
(71) | 91
(35) | 121
(23) | 93
(2) | - | | <u>1c</u> | 198
(90) | 197
(11) | - | 170
(12) | 105
(100) | 77
(59) | 121
(45) | 93
(5) | - | | <u>1 d</u> | 216
(100) | 215
(13) | 197
(1) | 188
(9) | 123
(83) | 95
(34) | 121
(24) | 93
(4) | | | <u>1e</u> | 232
(95)
234
(35) | 231
(10)
233
(3) | 197
(14) | 204
(10)
206
(3) | 139
(100)
141
(36) | 111
(32)
113
(11) | 121
(31) | 93
(4) | - | | <u>1 f</u> | 223
(76) | 222
(10) | - | 195
(13) | 130
(100) | 102
(28) | 121
(25) | 93
(4) | | | <u>19</u> | 243
(88) | 242
(9) | 197
(5) | 215
(4) | 150
(100) | - | 121
(32) | 93
(5) | ~ | | <u>2a</u> | 242
(100) | 241 | 211
(3) | 214
(4) | 135
(23) | 107
(12) | 135
(23) | 107
(12) | 227
(85) | | <u>2b</u> | 226
(81) | 225
(2) | 211
(100) | 198
(3) | 119
(6) | 91
(12) | 135
(11) | 107
(2) | 211
(100) | | <u>2c</u> | 212
(84) | 211
(2) | _ | 184
(3) | 105
(12) | 77
(41) | 135
(22) | 107
(5) | 197
(100) | | <u>2d</u> | 230
(97) | 229
(3) | - | 202
(2) | 123
(13) | 95
(15) | 135
(11) | 107
(3) | 215
(100) | | <u>2e</u> | 246
(81)
248
(27) | 245
(1) | 211
(10) | 218
(3)
220
(1) | 139
(15)
141
(5) | 111
(18)
113
(6) | 135
(18) | 107
(5) | 231
(100) | | <u>2 f</u> | 237
(70) | 236
(2) | - | 209
(3) | 130
(8) | 102
(15) | 135
(14) | 107
(4) | 222
(100) | | <u>2g</u> | 257
(89) | - | 211
(4) | 229
(3) | 150
(3) | - | 135
(17) | 107 | 242
(100) | Relative intensities in parentheses. Received, 1st December, 1980