THE MASS SPECTRA OF FURAN CHALCONE ANALOGUES

Francesco P. Ballistreri, Giuseppe Musumarra and Salvatore Occhipinti[®]
Istituto Dipartimentale di Chimica e Chimica Industriale, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy

<u>Abstract</u> - The electron impact mass spectra of 14 furan chalcone analogues $(5-X-C_4H_2O-CH=CH-CO-C_6H_4-\underline{p}Y)$, X=H, Me; Y=OMe, Me, H, F, CI, CN, NO_2) are reported and the fragmentation pattern is discussed and compared to those of chalcones and their thiophene analogues.

The mass spectral behaviour of ∞ , β -unsaturated cycloketones^{1,2}, styrylketones³, benzalacetones⁴ and substituted benzalacetophenones⁴⁻⁶ has been investigated. The mass spectrum of benzalacetophenone was first recorded by Beynon⁷: the major fragmentations of this compound were rationalised and found to be characteristic. Following recent studies on the mass spectra of some substituted thiophene chalcone analogues⁸, we here report the electron impact mass spectra at 70 eV of 14 substituted first chalcone analogues (series $\underline{1}$ and $\underline{2}$).

Series X substituent
$$\frac{1}{2}$$
 H $_{2}$ CH $_{3}$

Y Substituent · OCH $_3$, CH $_3$, H, F, CI, CN, NO $_2$ Designation : \underline{a} \underline{b} \underline{c} \underline{d} \underline{e} \underline{f} \underline{g}

The effect of the heteroatom and of X and Y substituents on ^{13}C chemical shifts of the terms in series $\underline{1}$ and $\underline{2}$ have been discussed 9 . Their ^{13}C NMR and IR spectra showed that the above compounds exist in the $\underline{\text{trans}}$ isomeric form 9 .

The mass spectra of furan chalcone analogues in series $\underline{1}$ and $\underline{2}$ are listed in the Table. These compounds, under electron impact, are very stable being characterized by a high degree of conjugation and the molecular ions are always very intense, as already found for the corresponding thiophene chalcone analogues and for benzalacetophenones 4-6. The molecular ions for $\underline{1a}$, $\underline{1b}$ and $\underline{1d}$ perform the base peak,

whereas for $\frac{1c}{1e-1g}$ the base peak is the substituted benzoyl cation $\begin{bmatrix} Y-C_6H_4-C0\end{bmatrix}^{+}$. In series $\underline{2}$ the base peak is the $\begin{bmatrix} M-CH_3\end{bmatrix}^{+}$ ion, except for $\underline{2a}$ where the molecular ion is also the base peak; the benzoyl cation shows lower intensity in this series. Inspection of the spectra reveals analogies with the fragmentation patterns of benzalacetophenones $^{4-6}$. We report below, as an example, the fragmentation pathway of $\underline{1c}$. The transitions substantiated by metastable peaks (directly observed in the 70 eV mass spectra) are indicated by an asterisk.

$$\begin{bmatrix} M-1 \end{bmatrix}^{+} \xrightarrow{-R^{+}} \\ 0 \\ -c_{6}H_{5}^{+} \\ -c_{0} \\ -c_{6}H_{5}^{-} \\ -c_{0} \\ -d_{1}H_{10} \end{bmatrix}^{+} \\ -c_{1}H_{10}^{+} \\ -c_{2}H_{2} \\ -c_{1}H_{10}^{+} \\ -c_{1}H_{10}^{+} \\ -c_{1}H_{10}^{+} \\ -c_{2}H_{2} \\ -c_{1}H_{10}^{+} \\ -c_{1}H_{10}^{+$$

EXPERIMENTAL

 $\frac{\text{Products}}{\text{Products}}$ - The syntheses and the physical properties of furan chalcone analogues in series 1 and 2 have been reported.

Mass spectra - The mass spectra were recorded on a LKB 9000S spectrometer at 70 eV, with ion source temperature 250°C. The samples were introduced using the direct inlet probe technique.

REFERENCES

- 1. H. Budzikiewicz, C. Djerassi, and D.H. Williams, "Mass Spectrometry of Organic Compounds", Holden-Day, San Francisco, 1967, chapt. 3.
- 2. C. Fenselau, W.G. Dauben, S.W. Shafter, and N.D. Vietmeyer, <u>J. Amer. Chem. Soc.</u>, $1969, \underline{91}, 112$.
- 3. P.J. Smith, J.R. Dimmock, and W.G. Taylor, Can. J. Chem., 1972, 50, 871.
- 4. Y. Itagakı, T. Kurosawa, S. Sasaki, C.-T.Chang, and F.-C.Chen, <u>Bull. Chem. Soc.</u> <u>Japan</u>, 1966, <u>39</u>, 538.
- 5. C. Van de Sande, J.W. Serum, and M. Vandewalle, <u>Org. Mass Spectrom</u>., 1972, <u>6</u>, 1333.
- 6. E. Rouvier, H. Medina, and A. Cambon, Org. Mass Spectrom., 1976, 11, 800.
- J.H. Beynon, "Mass Spectrometry and its Applications to Organic Chemistry, Elsevier Publishing Company, Amsterdam, 1960, p. 270.
- 8. A. Arcoria, F.P. Ballistreri, G. Musumarra, and S. Occhipinti, Org. Mass Spectrom., in press.
- 9. G. Musumarra, and F.P. Ballistreri, Org. Magn. Res., in press.

 <u>Acknowledgements</u> We thank C.N.R. (Rome) for financial support.

Table Characteristic peaks in the mass spectra of furan and 5-methylfuran chalcone analogues (series $\underline{1}$ and $\underline{2}$) \underline{a} .

				0 B					
Comp.	м ⁺	M – 1	M – Y	M-CO	Α	A-CO	В	B-CO	M-15
<u>1 a</u>	228 (100)	227 (7)	197 (3)	200 (6)	135 (50)	107 (5)	121 (12)	93 (2)	_
<u>1b</u>	212 (100)	211 (9)	197 (6)	184 (8)	119 (71)	91 (35)	121 (23)	93 (2)	-
<u>1c</u>	198 (90)	197 (11)	-	170 (12)	105 (100)	77 (59)	121 (45)	93 (5)	-
<u>1 d</u>	216 (100)	215 (13)	197 (1)	188 (9)	123 (83)	95 (34)	121 (24)	93 (4)	
<u>1e</u>	232 (95) 234 (35)	231 (10) 233 (3)	197 (14)	204 (10) 206 (3)	139 (100) 141 (36)	111 (32) 113 (11)	121 (31)	93 (4)	-
<u>1 f</u>	223 (76)	222 (10)	-	195 (13)	130 (100)	102 (28)	121 (25)	93 (4)	
<u>19</u>	243 (88)	242 (9)	197 (5)	215 (4)	150 (100)	-	121 (32)	93 (5)	~
<u>2a</u>	242 (100)	241	211 (3)	214 (4)	135 (23)	107 (12)	135 (23)	107 (12)	227 (85)
<u>2b</u>	226 (81)	225 (2)	211 (100)	198 (3)	119 (6)	91 (12)	135 (11)	107 (2)	211 (100)
<u>2c</u>	212 (84)	211 (2)	_	184 (3)	105 (12)	77 (41)	135 (22)	107 (5)	197 (100)
<u>2d</u>	230 (97)	229 (3)	-	202 (2)	123 (13)	95 (15)	135 (11)	107 (3)	215 (100)
<u>2e</u>	246 (81) 248 (27)	245 (1)	211 (10)	218 (3) 220 (1)	139 (15) 141 (5)	111 (18) 113 (6)	135 (18)	107 (5)	231 (100)
<u>2 f</u>	237 (70)	236 (2)	-	209 (3)	130 (8)	102 (15)	135 (14)	107 (4)	222 (100)
<u>2g</u>	257 (89)	-	211 (4)	229 (3)	150 (3)	-	135 (17)	107	242 (100)

Relative intensities in parentheses.

Received, 1st December, 1980