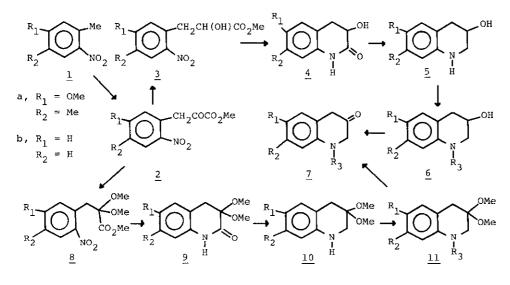
SYNTHESIS OF 1-ACYL-1,2-DIHYDRO-1-BENZAZOCINE DERIVATIVES

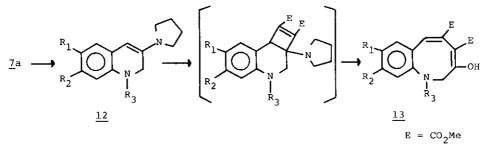

Norio Kawahara^{*} and Takako Nakajima Hokkaido College of Pharmacy, Katsuraoka-cho, Otaru-shi, 047-02, Japan Tsuneo Itoh and Haruo Ogura School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, 108, Japan

Abstract - Substituted 1,2,3,4-tetrahydroguinolin-3-one $(\underline{7})$ was synthesized from nitrobenzene derivatives ($\underline{1}$) in several steps. The compound ($\underline{7}a$) was converted the pyrrolidine enamine, and then treated with dimethyl acetylenedicarboxylate (DMAD) to give a ring expanded heterocyclic product ; dimethyl 1-acetyl-1,2-dihydro-3-hydroxy-8-methoxy-9-methyl-1-benzazocine-4,5dicarboxylate ($\underline{13}a$).

As a part of our programme of studies on heterocyclic compounds, we reported a synthetic approach to mitomycin derivatives using a transannular cyclization of 8-membered ring compounds.¹⁾ Now, we have designed the preparation of substituted 1,2,3,4-tetrahydroquinolin-3-one which might be expected to be useful for the syntheses of benzazocine derivatives and others. In our initial approach shown in scheme 1, methyl 5-methoxy-4-methyl-2-nitrophenylpyruvate (2a) was reduced with NaBH₄ followed by esterification to methyl 5-methoxy-4-methyl-2-nitrophenyllactate (3a, mp 125-126°, 87%). Catalytic hydrogenation of the nitro group with hydrogen over palladium at atmospheric pressure directly afforded the ring closed product 3-hydroxy-6-methoxy-7-methyl-1,2,3,4-tetrahydroquinolin-2-one (4a, mp 189-191°, 89%). Whereas the amide group of 4a was easily reduced with sodium bis-(2-methoxyethoxy)aluminium hydride in dry benzene at 60-70° for 1 hr to give the amine (5a, mp 97-98°, 43.8%), subsequent direct oxidation of the hydroxy function proved difficult.

Therefore, the transformation of the amino alcohol (<u>5</u>b) into the 3-keto compounds (<u>7</u>b) was examined. While various N-blocked alcohols (<u>6</u>b, $R_3 = COCH_3$, Ms, Ts, COCF₃, COOEt), prepared from <u>5</u>b, stoutly resisted oxidation to <u>7</u>b under various conditions, the oxidation of <u>6</u>b ($R_3 = COCH_3$) with Cro_3 -AcOH-c.H₂SO₄²) at low

-729-



sheme 1

temperature gave the desired product $(\frac{7}{2}b, R_3 = COCH_3)$ as an oil contaminated with <u>6b</u> in poor yield. Evidence in support of structure <u>7</u>b (R₃ = COCH₃) rested on the ¹H nmr (CDCl₂) spectrum which showed three singlets at δ 2.23 (3H, COCH₂), 3.54 (2H, -CH_2-) and 4.34 (2H, -CH_2-), and aromatic protons at δ 7.09, 7.21 (4H, broad), but various attempted purification of $\frac{7}{2}$ (R₃ = COCH₂) failed. After preparation of 7 was tried by several alternate routes, a satisfactory method was found. Treatment of pyruvic acid ester (2a) with a large excess of trimethy orthoformate in refluxing MeOH for long time in the presence of boron trifluoridediethyl ether afforded the acetal (8a, mp 99-101°, 58%). Formation of the ring closed compound (9a, mp 231-232°) from 8a proceeded smoothly by catalytic hydrogenation over Pd-C in 95.6% yield. Subsequent reduction with sodium bis-(2methoxyethoxy)aluminium hydride in dry benzene afforded the secondary amino compound (10a, mp 121-123°, 56.6%). Compound (10a) was acetylated quantitatively with Ac₂0 in dry ether to give $\underline{11}a$ (R₃ = COCH₃, mp 113-114°). The deacetallization of <u>lla</u> could be accomplished by brief warming in 85%aq.AcOH or stirring with dil.HCl in CH₂Cl₂ at r.t. to give $\underline{7}a$ in 75-85% yield; $\underline{7}a$ [R₃ = COCH₃, mp 149-151°, $C_{13}H_{15}NO_3$, m/e 233 (M⁺), ¹H nmr (CDCl₃) δ 2.23 (s, 6H, C-CH₃ and COCH₃), 3.56 (s, 2H, -CH₂-), 3.84 (s, 3H, OCH₃), 4.35 (s, 2H, -CH₂-), 6.64 (s, 1H, aromatic), 7.04 (br.s, 1H, aromatic), In the 13 C nmr (CDCl₃) spectrum eleven signals were

observed.].3)

Thus, the desired 1,2,3,4-tetrahydroquinolin-3-one (<u>7a</u>) was obtained in fairly good yield. Treatment of <u>7a</u> with pyrrolidine gave a labile oily product [<u>12a</u>, $R_3 = COCH_3$, ¹H nmr (CDCl₃) δ 1.90 (m, 4H, $-CH_2CH_2-$), 2.19 (s, 6H, C-CH₃ and COCH₃), 3.29 (m, 4H, $-CH_2NCH_2-$), 3.81 (s, 3H, OCH_3), 4.55 (s, 2H, $-CH_2-$), 5.03 (s, 1H, vinylic), 6.44 (s, 1H, aromatic), 6.77 (br.s, 1H, aromatic)], which was

sheme 2

not purified and treated with DMAD in acetonitrile at room temperature. The addition product (<u>13a</u>, R₃ = COCH₃) was isolated by preparative TLC (Wakogel 13-5F) as a crystalline solid in 61% yield; <u>13a</u> [mp = 98-101°, $C_{19}H_{21}NO_7$, m/e 375 (M⁺), ¹H nmr (CDCl₃) & 1.59 (s, 3H, COCH₃), 2.23 (s, 3H, C-CH₃), 3.68 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 5.71 (d, 1H, J = 18Hz, C₂-H), 6.75 (s, 1H, aromatic), 7.02 (s, 1H, aromatic), 7.63 (s, 1H, vinylic), 13.00 (s, 1H, OH), The ¹³C nmr (CDCl₃) showed eighteen signals.].

Further investigations relating to these tetrahydroquinolone derivatives $(\underline{7})$ are in progress.

Acknowledgements and References

We thank Dr. J. W. Lown and Dr. T. Hata for helpful comments on this work.
1 a J. W. Lown and T. Itoh, Canad. <u>J. Chem. Soc</u>., 1975, <u>53</u>, 960.
b T. Itoh, T. Hata and J. W. Lown, <u>Heterocycles</u>., 1976, <u>4</u>, 47.

2 S. S. Chatterjee and A. Shoeb, Synthesis., 1973, 153.

3 The structure assignments of the products are based on the satisfactory elemental analyses and spectral data.

Received, 20th January, 1981