SYNTHESIS OF 3-SUBSTITUTED-5-0X0-5H-[1]BENZOPYRANO[2,3-b]PYRIDINE

Toshihiro Ishiguro^{*}, Kiyoshi Ukawa, Hirosada Sugihara and Akira Nohara Medicinal Research Laboratories, Central Research Division, Takeda Chemical Industries, Ltd., Yodogawaku, Osaka, 532, Japan.

Abstract ---- 3-Cyano-, 3-alkoxycarbonyl-, and 3-formyl-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine derivatives were prepared by reactions of 2-amino-4-oxo-4H-l-benzopyran-3-carboxaldehydes 1 with acetylene derivatives (methods A-C) or with reactive methylene compounds (methods D-E) and also by catalytic hydrogenation of 2-chloro-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine-3-carbonitriles 12 (method F).

It has been reported that reactions of 2-amino-4-oxo-4H-1-benzopyran-3-carboxaldehyde $\frac{1}{100}$ or 4-oxo-4H-1-benzopyran-3-carbonitriles with some reactive methylene compounds afford 2,3-disubstituted-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine derivatives. $\frac{1}{100}$ However, there is no report on the synthesis of 3-substituted-5-oxo-5H-[1]benzopyrano[2,3-b]pyridines which carry no substituent at the 2-position. In this paper, the synthesis (methods A-F) of 3-cyano-, 3-alkoxycarbonyl- and 3-formyl-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine derivatives is described.

5-0xo-5H-[1]benzopyrano[2,3-b]pyridine-3-carbonitriles 2a-i were prepared by the following two methods: Method A is the reaction of 2-amino-4-oxo-4H-1-benzopyran-3-carboxaldehydes 1a-i with cyanoacetylene in DMF at 100°C for 1h and then at 140°C for 10h.: Method B is the reaction of 1c,d with d-chloroacrylonitrile in the presence of triethylamine in DMF at 120°C for 14h. In the case of method B, the intermediary adduct 3 was obtained. The adduct 3 afforded 2c in 65% yield on treatment with triethylamine in DMF at 120°C for 10h.

Ethyl 5-oxo-5H-[1]benzopyrano[2,3-b]pyridine-3-carboxylates 5a-d were prepared by the method C : A mixture of 1a,c,j, ethyl propiolate and triethylamine was heated in DMF at 90° C

for 40 min to afford the intermediate, aminoacrylates $\frac{4}{3}$, (a, mp 201-203°C, 39%, b, mp 201-203°C, 52%, c, mp 228-230°C(dec), 29%) which on treatment with triethylamine in DMF at 130°C for 2.5h afforded $\frac{5}{3}$, b, d. In some cases, the compound $\frac{5}{3}$ could be directly obtained from $\frac{1}{3}$ without isolation of the aminoacrylate $\frac{4}{3}$ as exemplified by the case of $\frac{5}{3}$ C (chart 1).

$$\begin{array}{c} \text{NEt}_{3} \text{/ DMF} \\ \\ \overset{\text{C1}}{\sim} \overset{\text{C1}}{\sim}$$

Chart 1

II Reaction of 2-amino-4-oxo-4H-l-benzopyran-3-carboxaldehydes 1 with reactive methylene compounds (methods D-E)

When 2-amino-4-oxo-4H-1-benzopyran-3-carboxaldehydes 1a-d,g were treated with cyano-acetyl chloride or methyl malonyl chloride generated in situ by the reaction of cyanoacetic acid or malonic acid monomethyl ester with PCl₅in CH₂Cl₂, in DMF at 60°C for 3h, 5-oxo-5H-[1]benzopyrano[2,3-b]pyridine-3-carboxylate 2a-d,g or methyl 7-ethyl-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine-3-carboxylate 2a-d,g or methyl 7-ethyl-5-oxo-5H-[1]benzopyr

$$\begin{array}{c} \text{R} & \begin{array}{c} \text{NH}_2 \\ \text{O} \\ \text{CHO} \\ \end{array} & \begin{array}{c} \text{R}_1 \\ \text{R}_1 \\ \end{array} & \text{N-CHO} \\ \end{array} & \begin{array}{c} \text{R}_1 \\ \text{R}_1 \\ \end{array} & \text{N-CHO} \\ \end{array} & \begin{array}{c} \text{R}_1 \\ \text{R}_1 \\ \end{array} & \begin{array}{c} \text{COC1} \\ \text{R}_1 \\ \end{array} & \begin{array}{c} \text{COC1} \\ \text{R}_1 \\ \end{array} & \begin{array}{c} \text{CN} \\ \end{array} & \begin{array}{c} \text{CN}$$

Chart 2

Chart 3

5-0xo-5H-[1]benzopyrano[2,3-b]pyridine-3-carboxaldehydes 9a-c were synthesized by the method E (chart 4): 9a-c were yielded by heating a mixture of 1a,c,d and malonaldehyde bis-(dimethylacetal) in boron trifluoride etherate containing formic acid at 60° C for 2h together with a small amount of the deformylated compounds $10a^3-c^4$. The oximes 11 (a: mp $250-252^{\circ}$ C, 93%, b: mp $247-249^{\circ}$ C, 95%) which were obtained by treatment of 9b,c with hydroxylamine hydrochloride, were treated with 9001_3 in DMF at room temperature for 9a0.5h to give the nitriles 2 (c, 95%, d, 96%).

$$\begin{array}{c} \text{R} & \begin{array}{c} \text{O} \\ \text{CH} & \begin{array}{c} \text{OCH}_3 \\ \text{CH} & \begin{array}{c} \text{COCH}_3 \\ \end{array} \end{array} \right)_2 \\ \text{CH} & \begin{array}{c} \text{CH} & \begin{array}{c} \text{OCH}_3 \\ \end{array} \right)_2 \\ \text{BF}_3 \cdot \text{OEL}_2 \\ \text{HCO}_2 \text{H} \\ \end{array} \right)_2 \\ \text{a:} & \text{R} = \text{H} \\ \text{c:} & \text{R} = \text{Et} \\ \text{d:} & \text{R} = \text{i-Pr} \end{array} \right)_2 \\ \text{d:} & \text{R} = \text{Et} \\ \text{d:} & \text{R} = \text{i-Pr} \end{array} \right)_2 \\ \text{d:} & \text{R} = \text{Et} \\ \text{d:} & \text{R} = \text{i-Pr} \end{array} \right)_2 \\ \text{d:} & \text{R} = \text{Et} \\ \text{d:} & \text{R} = \text{i-Pr} \end{array} \right)_2 \\ \text{d:} & \text{R} = \text{Et} \\ \text{d:} & \text{R} = \text{i-Pr} \end{array} \right)_2 \\ \text{d:} & \text{R} = \text{Et} \\ \text{d:} & \text{R} = \text{i-Pr} \end{array} \right)_2 \\ \text{d:} & \text{R} = \text{Et} \\ \text{d:} & \text{R} = \text{i-Pr} \end{array} \right)_2 \\ \text{d:} & \text{R} = \text{II} \\ \text{d:} & \text{R}$$

III Catalytic hydrogenation of 2-chloro-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine-3-carbonitriles (method F)

Chart

2-Hydroxy-5-oxo-5H-[1]benzopyrano[2,3-b]pyridine-3-carbonitriles $\underbrace{8a}_{0}, \underbrace{b}^{5}_{0}$ were converted to the 2-chloro compounds $\underbrace{12}_{0}$ (\underbrace{a}_{0} , mp 233-234°C, 76%, \underbrace{b}_{0} , mp 242-243°C, 74%) by the treatment with POC1 $_3$ -PC1 $_5$ at 120°C for 2h. Catalytic hydrogenation of $\underbrace{12a}_{0}, \underbrace{b}_{0}$ over 5% Pd-C in the presence of K_2 CO $_3$ in DMF at room temperature gave $\underbrace{2c}_{0}, \underbrace{d}_{0}$ (chart 5, method F).

Chart 5

3-Substituted-5-oxo-5H-[1] benzopyrano[2,3-b]pyridines which were synthesized by the above mentioned processes (methods A-F), are shown in Table I.

Table [3-Substituted-5-oxo-5H-[1]benzopyrano[2,3-b]pyridines

$$\bigcap_{\mathsf{R_1}} \bigcap_{\mathsf{O}} \bigcap_{\mathsf{N}} \bigcap_{\mathsf{R_2}} \bigcap_{\mathsf{R_2}} \bigcap_{\mathsf{R_2}} \bigcap_{\mathsf{R_3}} \bigcap_{\mathsf{R_3}} \bigcap_{\mathsf{R_4}} \bigcap_{\mathsf{N}} \bigcap_{\mathsf{$$

compd	R ₁	R_2	mp °C	recrystn solvent	yield(%)	method
2 <u>a</u>	Н	CN	220-226	EtOH	32	А
,-					39	D
2 b	7-Me	CN	240-242	Ac0Et	30	A
					44	D
2c	7-Et	CN	183-185	CH ₃ CN	28	А
					33	В
					49	D
					76	F
2d	7-1-Pr	CN	203-205	EtOH	36	Α
~					35	В
					52	D
					72	F
2e	7-t-8u	CN	247-249	CH ₃ CN	38	A
2e 2f 2g	7,9-Me ₂	CN	254-257	CH ₃ CN	47	A
2g	7-C1	CN	286-288	DMF	30	А
~					41	D
2h	7-1-PrO	CN	259-261	CHC13-CH3CN	23	A
~				0	6	D
21	9-Me0	CN	> 300	DMF	33	Д
5 _a	В	CO ₂ Et	139-140	Me0H	49	C
5b	7-Et	CO ₂ Et	140-142	EtOH	62	C
5 <u>b</u> 5 <u>c</u>	7-C1	CO ₂ Et	176-177	EtOH	46	C
5,₫	6,7-	CO ₂ Et	186-188	Me ₂ CO	53	С
6	7-Et	CO ₂ Me	156-157	MeOH	36	D
9 <u>a</u>	Н	сно	220-222	CH ₃ CN	10	E
9 . b	7-Et	CH0	175-178	CH ₃ CN	31	E
9 <u>c</u>	7-1-Pr	CHO	211-213	1-Pr ₂ 0	18	Ε

The starting materials, 2-amino-4-oxo-4H-1-benzopyran-3-carboxaldehydes ([a-j]), were synthesized from 4-oxo-4H-1-benzopyran-3-carbonitriles⁶⁾ by the modified method of the reference 1), i.e. in the presence of morpholine in DMF-H₂O at 60°C for 2h (Table II).

Table II

Conversion of 4-oxo-4H-1-benzopyran-3-carbonitriles into 2-amino-4-oxo-4H-1-benzopyran-3-carboxaldehydes 1

$$\operatorname{R}^{0}\operatorname{\operatorname{CHO}}^{\operatorname{NH}_{2}}$$

compd	R	mp °C	recrystn solvent	yıeld(%)
la	Н	252-255 (dec)	Ac0H	70
~		248-250 (dec)	EtOH	₅₉ 1)
lр	6-Me	282-284 (dec)	AcOH	69
ίς	6-Et	246-249 (dec)	acetone	71
ĭ₫	6-1-Pr	206-208	Ac0H	65
1 <u>e</u>	6-t-Bu	240-242	Ac0H	64
ũ	6,8-Me ₂	259-263 (dec)	Ac0H	61
1g	6-C1	308-310 (dec)	AcOH	67
ĩ,	6-1-PrO	218-219	CHC13	60
ນຼ່	8-Me0	235-238	CHC13	€8
Ŋj	5,6-	258-260	AcOH	62

ACKNOWLEDGMENTS

The authors are grateful to Dr.Y.Sanno for his valuable advice and helpful discussion. We also wish to thank Drs.E.Ohmura and K.Morita for their encouragement throughout this work.

References and Notes

- 1) U.Petersen and H.Heitzer, Liebigs Ann.Chem. 1976, 1659.
- C.K.Ghosh, D.K.SinhaRoy and K.K.Mukhopadhyay, <u>J.Chem.Soc.Perkin I</u>, 1979, 1964;
 C.K.Ghosh, Synthetic Commun., 1978, 8, 487.
- 3) F.G.Mann and J.H.Turnbull, J.Chem.Soc., 1951, 761.
- 4) $10a^{3}$, mp 187-188°C, 4%, 10b, mp 96-97°C, 3%, 10c, mp 101-102°C, 12%.
- 5) Compounds \S_a, \S_b were prepared by the following method: treatment of $13a, \S_b$ with malononitrile in the presence of piperidine in EtOH at refluxing for $2.5h^2$ afforded the aminonitriles 14 (a, mp>300°C, 92%, b, mp>300°C, 87%), which on reaction with NaNO₂ in

 $\text{CF}_3\text{CO}_2\text{H}$ for 1.5h followed by hydrolysis with H_2O gave $\frac{8}{8}$ (a, mp>300°C, 60%, b, mp>300°C, 82%).

6) A.Nohara, H.Kuriki, T.Saijo, H.Sugihara, M.Kanno and Y.Sanno, <u>J.Med.Chem.</u>, 1977, 20, 141.

Received, 22nd January, 1981