STUDIES ON FURAN DERIVATIVES. XIII. THERMOLYSIS OF METHYL 5-(2-AZIDOPHENOXY)-2-FUROATE

Akira Tanaka* and Toshinao Usui
Faculty of Pharmaceutical Sciences, Josai University, Keyakidai
1-1, Saitama 350-02, Japan

Abstruct — In thermolysis of methyl 5-(2-azidophenoxy)-2-furoate, the first conversion of this into 2-(2-methoxalyl-vinyl)benzoxazole has been found.

Meth-Cohn and co-workers have proposed a new mechanism on the pyrrolo[2,1-b]benzothiazole formations employing photolysis and thermolysis of 2-azidophenyl thienyl sulfides, which involves the cleavage of thiophene ring to α,β -unsaturated thicketones via a five membered ring intermediate by intramolecular insertion of nitrene. They also have emphasized the propriety of this ring opening mechanism rather than the 1,4-cycloaddition pathway of nitrene already suggested in other related reactions. 3 Jones and Mckinley 4 have also assumed similar α,β -unsaturated indolenyl ketone intermediates in the deoxygenation of ortho-nitrophenyl-di-(2furyl)methanes to give diethyl 2-alkylfuro[3,2-c]carbazol-5-ylphosphates. We now confirmed that the thermolysis of methyl 5-(2-azidophenoxy)-2-furoate (I) leads to the formation of 2-(2-methoxalylvinyl)benzoxazole (II) which corresponds to α,β -unsaturated ketones (or thicketones) as mentioned above. Compound (I), prepared from methyl 5-(2-nitrophenoxy)-2-furgate by the usual method, 5 was allowed to thermolyse in ortho-dichlorobenzene at 160-170° for 3 hr under nitrogen. After cooling, an excess of solvent was removed and the residue was chromatographed on silica gel, eluting with benzene, to give II; yield 22%; m.p. 134-136° (from petroleum benzin); 1 H-N.M.R. δ (acetone-d₅): 3.89 (3H, s, CH₃), 7.10-7.85 (6H, m, benzene ring and vinylene H); I.R. ν (nujol): 1725, 1695 (C=0), and 1625 cm⁻¹ (C=N); mass spectrum m/e: 231 (40.5%), 203 (33), 172 (100), 144 (89), 116 (21.7), and 89 (23.4).

Hydrolysis of II in 5% sodium hydroxide solution gave 3-(2-benzoxazolyl)acrylic acid which was identified with a sample.

From these data, the structure of II was assigned as 2-(2-methoxalylvinyl)benz-

oxazole. The elemental analysis of II supported a molecular formula of $C_{12}H_gNO_4$. Thus, we could be obtained the stable α,β -unsaturated ketone (II) which corresponds to the ring opening intermediate proposed by Meth-Cohn et al. and a new synthetic rout for a benzoxazole ring system was also provided. More recently, α,β -unsaturated ketone and thicketone as minor components (\sim 1.5%) were isolated by Jones et al. in the reaction of 2-nitrenophenyl-di-(5-t-butyl-2-thienyl)methane.

References and Notes

- Part XII of this series: A. Tanaka, T. Usui, and M. Shimadzu, <u>J. Heterocyclic Chem.</u>, submitted.
- 2. J.M. Lindley, O. Meth-Cohn, and H. Suschitzky, J. Chem. Soc. Perkin I, 1978, 1198.
- K. Hafner and W. Kaiser, <u>Tetrahedron Letters</u>, 1964, 2185; G.R. Cliff, G. Jones, and J.M. Woollard, <u>J. Chem. Soc. Perkin I</u>, 1974, 2072.
- 4. G. Jones and W.H. Mckinley, J. Chem. Soc. Perkin I, 1979, 599.
- 5. Unpublished results; m.p. 63.5-65.5°.
- 6. W. Ried and H. Keller, Chem. Ber., 1956, 89, 2578.
- G. Jones, C. Keates, I. Kladko, and P. Radley, <u>Tetrahedron Letters</u>, 1979, 1445; P.C. Hayes,
 G. Jones, C. Keates, I. Kladko, and P. Radley, <u>J. Chem. Res. (S)</u>, 1980, 288; <u>idem</u>, <u>J. Chem. Res. (M)</u>, 1980, 3523-3535.

Received, 9th March, 1981