REGIO- AND STEREO-CONTROLLED DIELS-ALDER REACTION OF DIOXOPYRROLINES WITH ACTIVATED BUTADIENES: FACILE SYNTHESES OF RING D FUNCTIONALIZED ERYTHRINANS¹⁾

T<u>akehiro</u> S<u>ano</u>*, Jun T<u>oda</u>, and N<u>oriaki</u> K<u>ashiwaba</u> Showa College of Pharmaceutical Sciences, Setagaya-Ku, Tokyo 154, Japan Y<u>oshisuke</u> T<u>suda</u> Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa 920, Japan Y<u>Oichi</u> I<u>itaka</u> Faculty of Pharmaceutical Sciences, University of Tokyo, Tokyo 113, Japan

Diels-Alder reaction of Λ^2 -pyrroline-4,5-diones with activated butadienes proceeds in regio- and stereo-selective manner. Thus, isoquinolinopyrrolinediones (prepared in 3 steps from β -arylethylamines) gave single erythrinan derivatives which are functionalized at ring D in acceptable yields. The structure and stereochemistry of the adducts were established by chemical and spectroscopic means and finally by X-ray analysis of the derived diacetate (19).

Hydroindole synthesis by Diels-Alder reaction of Δ^2 -pyrroline-4,5-diones with butadiene exploited by Tsuda et al,²⁾ prompted us to use of activated butadienes such as l-methoxy-3-trimethylsilyloxybutadiene³⁾ instead of butadiene, since it seems to promise yielding variously functionalized hydroindoles directly. In that case the regio- and stereo-chemistry of the product must be clarified. This communication treats this subject mainly.

Table 1 summarizes the present result on Diels-Alder reaction of 2-aryl- Δ^2 pyrrolinediones (1) with some previous results²c) for comparison. It indicates that 2-phenyl- Δ^2 -pyrrolinedione is poorly reactive to butadiene unless the nitrogen is negatively substituted and 2-(3',4'-methylenedioxyphenyl) derivative is less reactive. However, with activated butadienes they are moderately reactive to yield single adduct suggesting that the reaction proceeds in regio- and stereo-selective manner (structures of the products are given on analogy with the results described below).

We therefore examined Diels-Alder reaction of isoquinolinopyrrolinediones (7), in which free rotation of an aromatic ring is prohibited by formation of a new

-1151 -

Table 1. Diels-Alder Reaction of 2-Aryl- Δ^2 -pyrroline-4,5-diones (1) with Butadienes.

dienophiles	(1)			reaction	cond	ition		pro	ducts	(2)	
Ar		R	diene	solvent	temp.	time	х	Y	R'	yield	mp
Ph		н	A	CH ₂ Cl ₂	180°	28hr	н	н	н	10% ^{a)}	228-230°a)
Ph		Н	А	Ac ₂ O	160°	8hr	н	н	Ac	60% ^{a)}	164-166° ^{a)}
Ph		Н	с	toluene	150°	8hr	н	OTMS	н	11% ^{b)}	(212-214°) ^{b)}
Ph		н	D	toluene	160°	10min	OTMS	OMe	н	35%	146-150°
Ph		Me	А	CH_2Cl_2	160°	8hr	н	н	Me	10% ^{a)}	158-160° ^{a)}
Ph		Me	А	Ac ₂ 0	160°	8hr	н	н	Me	10%	158-160°
Ph		Me	С	toluene	150°	7hr	н	OTMS	Me	15% ^{b)}	(154-156°) ^{b)}
3,4-(OCH2O)C	6 H 3	н	А	CH_2Cl_2	180°	28hr	н	н	н	C)	c)
3,4-(OCH2O)C	6 H 3	н	A	Ac ₂ O	160°	8hr	н	н	Ac	10%	gum

A: butadiene, C: 2-trimethylsilyloxybutadiene, D: 1-methoxy-3-trimethylsilyloxybutadiene.

a) see ref. 2c.

b) Isolated as the ketone $\frac{3}{2}$ after acid hydrolysis.

c) Not isolable.

Table 2. Syntheses of Isoquinolinopyrrolinediones (7) (mp and yield %)

	5		6		~		
a	57-58°,	98%	82-85°,	90%	209-212°,	89%	
b	75-76°,	99%	gum ,	90%	244-246°,	60%	
с	98-100°,	86%	148-150°,	80%	219-223°,	94%	
d	98-99°,	95%	138-141°,	80%	221-224°,	89%	

Chart 2

dienophile	diene	solvent	temp.	time(hr	:) 1,4	-adduct(mp)	yıeld(%)
7 <u>a</u>	А	toluene	170°	30	8a	175-176°	6
	В	toluene	140°	9	9a	gum	80 ^{b)}
	С	toluene	160°	17	10a	a)	33
	D	neat	130°	3	lla	124-126°	58
	E	neat	140°	0.5	12a	142-145°	58
7b	D	dioxane	130°	1	11b	142-144°	82
~~	Е	dioxane	130°	0.5	12b	141-143°	65
7c	A	toluene	170°	20	8c	c)	c)
-	В	toluene	140°	5	9c	191-192°	36
	C	toluene	170°	13	10c	a)	23
	D	neat	130°	3	11c	176-179°	49
	Е	neat	130°	2	12c	202-205°	76
7d	D	dioxane	120°	1	11d	174-177°	51
·	Е	neat	130°	2	12d	173-176°	64

Table 3. Diels-Alder Reaction of $\frac{7}{2}$ with Butadienes.

A: butadiene. B: 1-methoxybutadiene. C: 2-trimethylsilyloxybutadiene.

D: l-methoxy-3-trimethylsilyloxybutadiene.E: l,3-bis(trimethylsilyloxy)butadiene.

a) Isolated as a keto compound (13) after acid hydrolysis.

b) Yield given as a crude gum.

c) Not isolable.

cycloadducts	IR (cm ⁻¹) V c=o absorptions	NMR (CDCl ₃ , δ) olefinic protons
8a	1770, 1730, 1715	5.57-6.27 (2H, m.)
9a	1770, 1740, 1710	5.68-6.48 (2H, m.)
90	1775, 1740, 1715	5.91, 6.27 (each lH, m.)
11a	1770, 1725, 1710	5.34 (lH, d., J=5 Hz)
ць	1780, 1745, 1720	5.38 (1H, d., J=5 Hz)
11c	1770, 1745, 1720	5.33 (1H, d., J=5 Hz)
11d	1766, 1720, 1710	5.31 (1H, d., J=5 Hz)
12a	1760, 1740, 1715	5.35 (1H, d., J=6 Hz)
1,210	1760, 1740, 1715	5.38 (1H, d., J=6 Hz)
12c	1760, 1730, 1710	5.33 (1H, d., J=6 Hz)
120	1765, 1740, 1720	5.31 (1H, d., J=5 Hz)

Table 4. IR and NMR Spectra of the Cycloadducts.

ring. The desired dienophiles, 7a-d were prepared as shown in Chart 1, which were obtained as red-reddish yellow crystals in yield of 60~80% starting from the β -arylethylamines (4)(Table 2).

Table 3 summarizes the result of Diels-Alder reaction of 7 with various butadienes: reaction conditions, products, and yields. 7a-d were more reactive to butadienes than 1 apparently due to gaining planarity in a dienophile. The reaction was again highly regio- and stereo-selective to give single 1,4-cycloadducts in acceptable yields (IR and NMR listed in Table 4). The adducts 10a and 10c were characterized as the corresponding ketones (13a), mp 223-225°, and (13c), mp 272-275°, after acid hydrolysis (2.5%HCl-THF).

The regiochemistry of the adducts was elucidated as shown in Chart 3 as follows. Treatment of 11c and 12c with acid (2.5%HCl-THF) caused not only cleavage of the O-Si bond but also opening of the ring D to give the same keto-aldehyde (16), mp 243-246°, δ 8.07 (1H, brs, CHO). Trituration of 11c with methanol again gave the ring D cleaved product, the enol-ether (17), mp 182-186°, δ 3.67 (3H, s, OCH₃), 5.45 and 7.47 (each 1H, d, J=12 Hz, olefinic protons). While on treatment ^{1/2} with KF in THF, 11c and 12c gave the ketone (14) (52%), mp 210-213°, and (15) (54%), mp 208-211°, respectively, which changed into 16 and 17, respectively, on treatment with base (DBU at r.t.). Those ring opening reactions were rationalized in term of the reverse Michael reaction of a 1,5-diketo derivative. The above results indicate that the 1,4-cycloaddition of Δ^2 -pyrrolinediones proceeds in a fashion acceptable from the ground state electron interaction of the diene and the dienophile.

Chart 3

0:C •:N @:O

Fig. 1 The computer-plotted structure of the diacetate (19)

The structure of the adduct (10) was elucidated as shown in Chart 2 based on the above consideration. In fact, the derived ketone (13a) was isomeric with 2-keto derivative (18) reported previously.⁵⁾

The structure of llc including the stereochemistry of C₁-substituent was finally established by X-ray crystallographic analysis. The X-ray analysis was carried out for the diacetate (19), mp 242-244°, which was prepared by NaBH₄ reduction of the methoxy-ketone (14c) followed by acetylation. The intensity data were collected on a Philips PW-1100 diffractometer using graphite-monochromated Cu-Ka radiation. The structure was solved by direct methods with the MULTAN program.⁶⁾ Block-diagonal least-squares refinements of positional and thermal parameters based on 1483 observed reflections reduced *R* value to 0.04. The resulting structure is shown in Fig. 1, which rigidly established not only the α -configuration of C₁-OMe but also the β -configurations of the C₃ and C₇-OAc. The latter asymmetric centers are newly produced by hydride reduction. Furthermore, it is worthwhile to note that both the ring B and D have boat conformation in the crystalline state.

The stereochemistry of 9 was assumed as shown in Chart 2 based on the above results, though rigid proof was not available.

The present method may provide a simple route to erythrina alkaloids, since 6-alkoxycarbonyl group is easily removable from the above prepared 6-alkoxycarbonyl-7,8-dioxoerythrinans.⁷⁾

Acknowledgement: A part of this work was supported by Grant-in-Aid for Special Project Research from the Ministry of Education, Sciences and Culture, Chemical Research in Development and Utilization of Nitrogen-Organic Resources, and Naito Research Grant, for which we are grateful.

References and Note

- Dioxopyrrolines XXI. Syntheses of Erythrina and Related Alkaloids (4).
 Part XX: Y. Tsuda, Y. Sakai, M. Kaneko, K. Akiyama, and K. Isobe, <u>Heterocycles</u>, 16, in press.
- 2. a) Y. Tsuda, K. Isobe and A. Ukai, <u>Chem. Comm.</u>, 1971, 1554.
 b) Y. Tsuda, Y. Horiguchi, and T. Sano, <u>Heterocycles</u>, 1976, <u>4</u>, 1355.
 c) T. Sano and Y. Tsuda, <u>Heterocycles</u>, 1976, <u>4</u>, 1361.
- 3. S. Danishefsky and T. Kitahara, J. Am. Chem. Soc., 1974, 96, 7807.
- 4. T. Ibuka, Y. Mori and Y. Inubushi, Tetrahedron Letters, 1976, 3169.
- 5. Y. Tsuda, Y. Sakai and T. Sano, Heterocycles, 1981, 15, 1097.
- 6. G. Germain, P. Main, and M. M. Woolfson, Acta Cryst., 1971, A27, 368.
- 7. Y. Tsuda and Y. Sakar, Synthesis, 1981, 118.

Received, 27th March, 1981