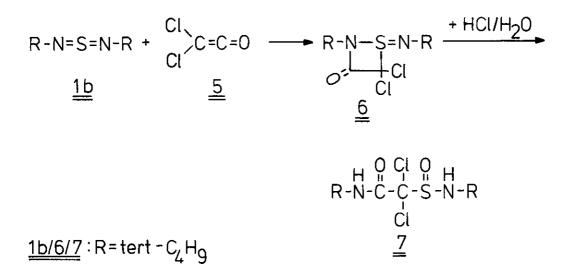
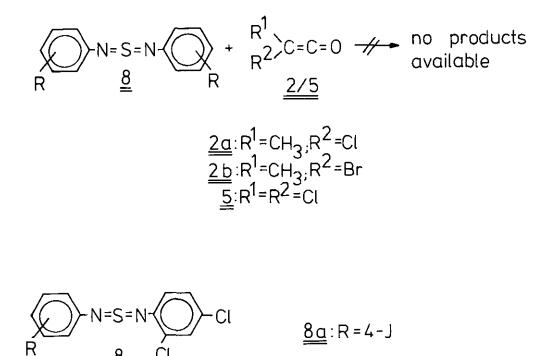
CYCLOADDITION REACTIONS OF KETENES TO SULFUR DIIMIDES

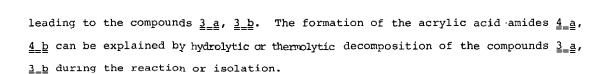
Richard Neidlein ^[+] and Werner Lehr Pharmazeutisch-Chemisches Institut der Universität Heidelberg Im Neuenheimer Feld 364, D-6900 Heidelberg, Germany

<u>Abstract</u>: The reactions of sulfur diimides $\underline{1}$ with substituted ketenes $\underline{2}$, $\underline{5}$ were studied and the structures of the reaction products $\underline{3}$, $\underline{4}$, $\underline{6}$, $\underline{7}$ were cleared up; the syntheses of new sulfur diimides $\underline{9}$, \underline{a} , $\underline{9}$, \underline{b} are described.

In the last few years we have studied the ractivities of sulfur diimides with bifunctional acid chlorides¹⁻⁹⁾. This led us to extend our investigations to reactions of sulfur diimides with halogenated ketenes which could be generated from the corresponding substituted acid halide in the presence of triethylamine¹⁰⁾. Although there have been some examples of the reactions of sulfur diimides with ketenes in the literature¹¹⁻¹⁷⁾, no reports with results appeared on the reactivities of halogenated ketenes towards sulfur diimides or of ketenes towards N-alkyl-N'-arylsulfur diimides like compounds $\underline{1}_{=\underline{a}}$ or unsymmetrically substituted N,N'diarylsulfur diimides $\underline{8}$.


Now we have found that the reactions of sulfur diimides 1_a , 1_b with chloromethyl- or bromomethyl-ketenes 2_a , 2_b in benzene or n-hexane as solvent yielded the acylated diamino sulfanes 3_a - 3_a . In the case of the sulfur diimide 1_a the reactions occurred under formation of acrylic amides 4_a , 4_b as by-products. The reaction mechanism is maybe the same as already described by Minami et al.¹⁵⁾; nevertheless, it was surprising that there was only an attack of the ketenes 2_a , 2_a b at the aryl-substituted nitrogen atom of compound 1_a . Although we regarded this nitrogen atom as less hindered we expected also an attack at the alkylated nitrogen atom in respect to the inductive effect of the tert.butyl-group as it was already described for the reactions of ketenes with carbo-diimides¹⁸⁾. But the reaction products indicated clearly that the steric effects predominated


$$R-N=S=N-R^{1} + \begin{array}{c} X \\ H_{3}C \\ \hline C=C=0 \\ \hline H_{2}C=C \\ \hline C=0 \\ \hline H_{$$


$$\frac{1a/2a/3a/4a}{1a/2a/3a/4a} : R = tert - C_4 H_9; R^1 = C_6 H_5; X = Cl$$

$$\frac{1a/2b/3b/4b}{2a/3c} : R = tert - C_4 H_9; R^1 = C_6 H_5; X = Br$$

$$\frac{1b/2a/3c}{1b/2b/3d} : R = R^1 = tert - C_4 H_9; X = Cl$$

<u>8b</u>:R=3-CF₃

The reactions of dichloroketene 5 with the sulfur diimide 1_{2} provided the 4,4dichloro-1,2-thiazetidine-3-one 6 as a yellow oil which could not be purified neither by distillation nor by chromatographic methods. Compound 6 is very sensitive to moisture and could readily be hydrolized by dilute hydrochloric acid yielding the amide 7. The structure of 7 confirmed the structure of 6 which was already pointed out by ir spectroscopy.

The reactions of symmetrically or of unsymmetrically substituted N,N'-diarylsulfurdiimides $\underline{8}$ with halogenated ketenes $\underline{2}$, $\underline{5}$ did not proceed by the formation of heterocyclic compounds. All N,N'-diarylsulfurdiimides $\underline{8}$ having a substituent in the ortho- or meta Position of the aryl group did not react with ketenes $\underline{2}$ or $\underline{5}$. In many other cases the reactions occurred under formation of tarry reaction products which could not further be purified. Perhaps these tarry materials are produced by polymerization of ketenes $\underline{2}$, $\underline{5}$ because halogenated ketenes are known to undergo polymerization even at low temperatures¹⁰⁾. In connection with these intended cycloaddition reactions some new unsymmetrically substituted N,N'-di-aryl-sulfurdiimides <u>8</u><u>a</u>, <u>8</u><u>b</u> were synthesized. -

Table 1: Yields, Physical and Spectral Data of Compounds 3, 4, 6, 7, 8

	_	-	
compounds	<u>yield</u> (%)	<u>mp</u> (°C)	<u>ir</u> (cm ⁻¹), KBr or liquid films
<u>3_a</u>	38	oil	3365 (NH), 1668 (C=O), 1650 (C=C)
<u>3_b</u>	32	oil	3368 (NH), 1680 (C=O)
<u>3_c</u>	56	88-89	3317 (NH), 1640 (C=O), 1616 (C=C)
<u>3_d</u>	41,5	75-77	3315 (NH), 1635 (C=O), 1606 (C=C)
<u>4_</u> a ¹⁹⁾	23	54	3300 (NH), 1676, 1540 (Amide I,II),
			1625 (C=C)
4_b ²⁰⁾	21	90	3270 (NH), 1675, 1555 (Amide I,II),
			1618 (C=C)
<u>6</u>	91	oil	1750 (C=O)
<u>7</u>	60	103-105	3405, 3220 (NH), 1682, 1520 (Amide
			I,II), 1096 (S=O)
<u>8_a</u>	86	101	1100, 1070 (N=S=N)
<u>8</u> _b	71	67-69	1098, 1067 (N=S=N)

¹H-nmr (90 MHz, 60 MHz, <u>ms</u>, m/e (rel. int, %) CDCl₃)

 $\underline{\underline{3}}_{\underline{a}} = 1.33 \text{ (s, C(CH_3)_3), 5.53-5.72} 284 (M^+, 2), 228 (5), 208 (11), 192$ $(C(Cl)=CH_2 + NH), 6.98-7.26 (47), 123 (25), 106 (34), 93 (54),$ (m, phenyl). 61 (18), 57 (100).

 $\underline{\underline{3}} \underline{\underline{b}}$ 1.33 (s, C(CH₃)₃), ~5.70 (s, 328 (M⁺, 1), 272 (3), 252 (4), 196 NH), 5.75, 5.97 (AB, <u>J</u>=2.2 Hz, (14), 192 (47), 150 (29), 133 (52), C(Br)=CH₂, 6.96-7.24 (m, phenyl). 105 (13), 57 (100).

Table 1 continued

<u>3</u> _⊆	1.17, 1.50 (2s, 2 C(CH ₃) ₃),	264 (M ⁺ , 2), 208 (20), 152 (65),
	3.73 (s, NH), 5.69, 5.77	106 (70), 89 (47), 61 (20),
	(AB, $\underline{J}=1.8$ Hz, C(Cl)=CH ₂).	57 (100).
<u>3_d</u>	1.18, 1.50 (2s, 2 C(CH ₃) ₃),	307 (M ⁺ , 4), 251 (15), 195 (38),
	3.70 (s, NH), 5.90, 6.15	149 (20), 132 (11), 104 (3),
	(AB, $J=2.2$ Hz, C(Br)=CH ₂).	56 (100).
<u>4_a</u>	5.88, 6.69 (AB, <u>J</u> =1.3 Hz,	181 (M ⁺ , 46), 146 (91), 89 (100),
	$C(C1) = CH_2$, 7.06-7.64 (m,	61 (87).
	phenyl).	
<u>4_</u> <u></u> ₽	6.11, 7.09 (AB, <u>J</u> =1.6 Hz,	225 (M ⁺ , 37), 146 (100), 133 (51),
	$C(Br) = CH_2$, 7.14-7.63 (m,	105 (33).
	phenyl).	
<u>6</u>	1.37, 1.45 (2s, 2 C(CH ₃) ₃).	
<u>7</u>	1.37, 1.45 (2s, 2 C(CH ₃) ₃),	
	4.05, 6.60 (2s, 2 NH).	

 a) Except of compound <u>6</u> satisfactory microanalyses were obtained for all compounds

Thank: We thank the <u>BASF Aktiengesellschaft</u>, Ludwigshafen/Rhein, the <u>Verband der</u> <u>Chemischen Industrie</u> - <u>Fonds der Chemie</u> - and the <u>Deutsche Forschungsgemeinschaft</u> for support of our research work, Dipl.-Chem. <u>W. Kramer</u>, Dipl.-Chem. Dr. <u>G. Schä-<u>fer</u> and <u>G. Beutel</u> for ¹H-nmr-spectra, Dr. <u>A. Hotzel</u> and <u>F. Beran</u> for mass-spectra, Mrs. <u>B. Weingärtner</u> and <u>D. Holzmann</u> for microanalyses, the <u>BAYER AG</u> and <u>HOECHST AG</u> for delivery of chemicals.</u>

Experimental part:

mp: "Reichert"-micromelting apparatus, uncorrected.- ¹H-nmr: HX 90E Bruker-Physik AG., Karlsruhe-Forchheim, T 60 A Varian.- ms: MAT 311 A - Varian.- ir: PerkinElmer 325.- The analyses were made by an automatic C,H,N - analysator ~ Heraeus, Hanau.-

<u>N-tert-Butyl-N'-(2-chloro-2-propenoyl)-N'-phenyldiaminosulfane 3_a and</u> <u>N-Phenyl-2-chloroacrylic acid amide $4a^{19}$ </u>: To a solution of 0.97 g (5 mM) sulfur diimide 1a and 2.01 g (20 mM) of triethylamine in 20 ml benzene was dropped a solution of 0.64 g (5 mM) of 2-chloropropionyl chloride in 15 ml benzene at 70 °C. After boiling for 1 h the mixture was cooled to room temperature, the precipitate filtered off and the solvent removed under reduced pressure. Column chromatography provided three fractions (column: 3.5 x 70 cm; silica gel "Macharay and Nagel", eluent: dichloromethane):

- 1) unreacted sulfurdiimide 1 a
- diaminosulfane <u>3</u>
- acrylic acid amide <u>4 a</u>

Compound $\underline{3}\underline{a}$ was purified by distillation in a micro-distillation-apparatus; light yellow oil.- Compound $\underline{4}\underline{a}$ was sublimated (40 °C/⁻²torr) and recrystallized from n-pentane; colourless crystals.-

<u>N-tert-Butyl-N'-(2-bromo-2-propencyl-)-N'-phenyldiaminosulfane 3 b and N-Phenyl-2-bromo-acrylic acid amide $4_{\underline{b}}^{20}$: 3 b, 4 b were obtained analogously as described for compounds 3 and 4 a. 3 b was purified by preparative tlc (silica gel "Merck", dichloromethane).-</u>

<u>N,N'-Di-tert-butyl-N-(2-chloro-2-propenoyl-)diaminosulfane</u> 3_c and <u>N,N'-Di-tert-butyl-N-(2-bromo-2-propenoyl)diaminosulfane</u> 3_d : 3_c , 3_d were obtained analog-ously as described for compounds 3_a , 4_a at 40 - 50 °C from sulfur dimide 1_b . They were purified by sublimation (30 °C/1 torr) or recrystallization from ethanol/ $H_2O.-$

<u>1-tert-Butylimino-2-tert-butyl-4,4-dichloro-1,2-thiazetidin-3-one</u> $\underline{6}$: To a boiling solution of 1.74 g (10 mM) sulfur diimide $\underline{1}$ and 1.50 g (15 mM) triethylamine in 40 ml n-hexane was dropped a solution of 1.47 g (10 mM) of dichloroacetyl chloride in 35 ml n-hexane. After 10 min the precipitate was filtered off, the solvent removed and under nitrogen atmosphere the residual oil was filtered; light yellow oil.

<u>N-tert-Butyl-2,2-dichloro-2-(tert-butyl)sulfinylacetamide 7</u>: To a solution of

0.65 g (2.28 mM) of compound $\underline{6}$ in 20 ml ethanol were added 25 ml of 0.5 N HCl at room temperature. The solution was boiled for 10 min and filtered; the precipitated crystals were collected, washed with 60 ml of ethanol and dried.

<u>N-2,4-Dichlorophenyl-N'-4-iodophenyl sulfurdiimide</u> g_a : To a solution of 3.40 g (12.80 mM) of N-2,4-Dichlorophenylimidosulfurous dichloride²¹⁾ in 20 ml benzene was added a solution of 2.80 g (12.80 mM) of 4-iodoaniline and 2.60 g (25.60 mM) of triethylamine in 25 ml benzene with cooling. The mixture afterwards was stirred for 4 h, the precipitate filtered off and the residue recrystallized from benzene/petrol-ether; dark red crystals.-

<u>N-2,4-Dichloro-N'-3-trifluoromethylphenyl-sulfurdiimide</u> $\underline{8}$ <u>b</u>: $\underline{8}$ was obtained analogously as described for compound $\underline{8}$ <u>a</u>; light red crystals.

References:

- + Dedicated to Professor Tetsuji Kametani on the occassion of his retirement.
- R. Neidlein and P. Leinberger, <u>Angew. Chem.</u> <u>87</u>, 811 (1975); <u>Angew. Chem.</u>, <u>Int.</u> Ed. Engl. <u>14</u>, 762 (1975).
- 2) R. Neidlein and P. Leinberger, Chem.-Ztg. 99, 465 (1977).
- 3) R. Neidlein and P. Leinberger, Synthesis 1977, 63.
- 4) R. Neidlein and P. Leinberger, Arch. Pharm. (Weinheim, Ger.), <u>311</u>, 520 (1978).
- 5) R. Neidlein, P. Leinberger and A. Hotzel, Org. Mass Spectr. 12, 628 (1977).
- 6) R. Neidlein and P. Leinberger, Chem.-Ztg. <u>99</u>, 433 (1975).
- R. Neidlein and P. Leinberger, A. Gieren and B. Dederer, <u>Chem. Ber</u>. <u>110</u>, 3149 (1977).
- R. Neidlein, P. Leinberger, A. Gieren and B. Dederer, <u>Chem. Ber</u>. <u>111</u>, 698 (1978).
- 9) R. Neidlein and W. Lehr, Chem.-Ztg. 104, 111 (1980).
- 10) W. T. Brady, Synthesis 1971, 415.
- 11) H. Hörhold and H. Eibisch, <u>Tetrahedron</u> <u>25</u>, 4277 (1969).
- 12) T. Minami, O. Aoki, H. Miki, Y. Ohshiro and T. Agawa, <u>Tetrahedron Lett</u>. <u>1969</u>,
 447.
- 13) H. Grill and G. Kresze, Tetrahedron Lett. 1970, 1427.
- 14) T. Minami, Y. Yamauchi, Y. Ohshiro, T. Agawa, S. Murai and N. Sonoda,

J. Chem. Soc., Perkin Trans. I, 1977, 904.

- 15) T. Minami, K. Yamataka, Y. Ohshiro, T. Agawa, N. Yasuoko and N. Kasai, J. Org. Chem. <u>37</u>, 3810 (1972).
- 16) Y. Kai, N. Yasuoka, N. Kasai, T. Minami, K. Yamataka, Y. Ohshiro and T. Agawa, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u> <u>1971</u>, 1532.
- 17) T. Minami and T. Agawa, J. Org. Chem. 39, 1210 (1974).
- 18) C. Metzger and J. Kurz, <u>Chem. Ber</u>. <u>104</u>, 50 (1971).

· · · .

- 19) A. Y. Yakubovich, L. Z. Saborovskii, L. I. Muler and V. S. Faermark, <u>Zhur. Obshch. Khim.</u> <u>28</u>, 317 (1958).
- L. F. Golovyashkina and F. Khodzhaeva, <u>Dokl. Akad. Nauk SSSR</u>, <u>Ser. Khim</u>. <u>29</u>, 31 (1972); <u>Chem. Abstr</u>. <u>78</u>, 42 990 (1973).
- 21) E.\$Levchenko and I. E. Sheinkman, Zhur. Obshch. Khim. 36, 428 (1966).

Received, 23rd March, 1981