REACTIONS OF 2-CHLOROINDOLES: SYNTHESIS OF 2,2'-BIINDOLYLS

Akinori Kubo^{*} and Keijiro Uchino Meiji College of Pharmacy, Nozawa, Setagaya-ku, Tokyo, 154, Japan

<u>Abstract</u> 3-Alkyl-2-chloroindoles(2) react with 3-alkylindoles(4) in the presence of boron trifluoride etherate to afford 3,3'-dialkyl-2,2'biindolyls(3) in good yields.

We have recently described an efficient method for the conversion of 2-indolinones (1) into indoles via 2-chloroindoles(2), which were easily prepared from 2-indolinones(1) and phosphoryl chloride by heating in neat liquid under nitrogen.¹ In this chlorination reaction, 1,3-dimethyl-2-indolinone(1a) was observed to afford the desired 2-chloroindole(2a) and 1,1',3,3'-tetramethyl-2,2'-biindolyl(3a). The product distribution was found to depend on the reaction conditions(Table 1) and the formation of 2,2'-biindolyl(3a) can be explained by the acid-catalyzed dimerization of 2-chloroindole(2a).

Since only a few studies on the chemical properties of 2,2'-biindolyls($\frac{3}{2}$) have been reported,² we examined the dimerization reactions of 2-chloroindoles($\frac{2}{2}$) and their reactions with 3-alkylindoles($\frac{4}{2}$) leading to 2,2'-biindolyls($\frac{3}{2}$) in the presence of boron trifluoride etherate.³

Treatment of 2-chloro-1,3-dimethylindole(2a) in methylene chloride with 1,3-dimethylindole(4a) in the presence of boron trifluoride etherate at 0°C for 30 min, and then at room temperature for 15 h provided a 91.2% yield of 1,1',3,3'-tetramethyl-2,2'-biindolyl(3a)[m.p. 211-212°; M⁺ 288(100%); ¹H n.m.r. δ (CDCl₃) 2.22(6H, s,2xC₃-CH₃), 3.53(6H,s,2xN-CH₃), 7.07-7.40(6H,m,ArH), 7.56-7.72(2H,m,ArH); ¹³C n.m.r. δ (CDCl₃) 9.4(q,2xC₃-CH₃), 30.3(q,2xN-CH₃)].

When the other 3-alkyl-2-chloroindoles(2b-c) were treated with 3-alkylindoles(4) under similar conditions the corresponding 2,2'-biindolyls(3b-d) were obtained in good yields(Table 2).⁴

			Δ $($ N R^1 R^1 2	$r \rightarrow O \qquad R^1 \qquad + R^1 $				
	R ¹	R ²	Reaction conditions	Prod- uct	Yield [%]	Prod- uct	Yield [%]	
1a	CH3	снз	110°/ 5 min	2a	38.3	3a	3.4	
			110°/ 25 min				24.6	
			80°/ 35 min		82.8			
lР	сн _з	^С 2 ^Н 5	110°/ 5 min	2b	59.0	3b		
			110°/2.5 h				17.2	

Table 1 Chlorination of 3-Alkyl-2-indolinones(1) with Phosphoryl Chloride

 R^2

 R^2R^2

R² poch

Table 2 Reactions of 3-Alkyl-2-chloroindoles(2) with 3-Alkyl-indoles(4) and Dimerization Reactions of 3-Alkyl-2-chloroindoles(2)

Prod- uct	R	R ²	R ³	R ⁴	Reaction conditions	Yield [%]	m.p.[°C](solvent)
3a	СН3	СН3	CH3	CH3	r.t./ 12 h	91	211-212°(CH ₂ C1 ₂ -hexane)
3a	CH3	CH3	CH3	CH3	60°/ 24 h	8 ^a	
3b	сн _з	с ₂ н ₅	СН _З	с ₂ н ₅	r.t./ 2 day	80	111-113°(CH ₂ C1 ₂ -hexane)
3b	СН _З	с ₂ н ₅	сн _з	с ₂ н ₅	60°/ 24 h	19 ⁴	•
3c	Сн _з	с ₂ н ₅	сн _з	CH3	r.t./ 12 h	99	164-165°(CH ₂ C1 ₂ -hexane)
3d	ห	сн _з	н	ĊH ₃	r.t./ 4 day	89	163-165°(ether-ptr.ether) (ref. ⁵ 162-163°)

a Dimerization reaction On the other hand, the dimerization reactions of 3-alkyl-2-chloroindoles(2a-b) afforded 2,2'-biindolyls(3a-b) in rather low yields(Table 2) and this indicates that the electron-withdrawing substituent of unprotonated 2a-b decreases reactivity toward the electrophile, *i.e.*, 1,3-dialkyl-2-chloroindoleninium ion.

Acknowledgements

We are grateful to Mr.T.Nakai for his contributions during the early stages of this work.

REFERENCES AND NOTES

- 1. A.Kubo and T.Nakai, Synthesis, 1980, 365.
- 2. J.Bergman and N.Eklund, Tetrahedron, 1980, 36, 1439 and references therein.
- 3. 2-Ethoxyindole is known to dimerize in the presence of boron trifluoride etherate to give 2-(2-ethoxyindol-3-yl)indole in 35% yield. H.Plieninger and D.Wild, <u>Chem. Ber.</u>, 1966, 99, 3063.
- Satisfactory spectroscopic and analytical or accurate mass data have been obtained for all new compounds.
- 5. (3d) was obtained from the dehydrogenation of the 3-methyl-2-(3-methylindolin-2-yl)indole(skatole dimer) with chloranil in benzene.
 G.Berti, A.Da Settimo, and D.Segnini, <u>Tetrahedron Letters</u>, 1960, 26, 13.
 A.Z.Britten and G.F.Smith, J. Chem. Soc., Perkin Trans. 1, 1972, 418.

Received, 17th February, 1981