α , β -unsaturated carboxylic acid derivatives. 20.¹⁾ N-methylation of α dehydroamino acid ester and its cyclic dipeptide from various routes

Chung-gi Shin,^{*} Yoshiaki Sato, Masato Hayakawa, and Masamichi Kondo Laboratory of Organic Chemistry, Kanagawa University, Kanagawa-ku, Yokohama 221, Japan Juji Yoshimura Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology, Midori-ku, Yokohama 227, Japan

Abstract—The selective N-methylation of 1-, 4-, and 1,4-positions of individual 3- and 3,6-dialkylidene-2,5-piperazinediones (PDO) either by the cyclization of α -dehydroamino acid ester with methylamine or by the reaction of PDO with methyl iodide in the presence of sodium hydride was performed to give the desired product in a fairly good yield.

Recently, many bioactive oligopeptides N-blocked partially with methyl group were discovered and the correlation between the structure and the bioactivity of the peptides has been investigated.^{2,3)} Furthermore, antibiotic N-methylated dehydropeptides such as tentoxin⁴⁾ were isolated, a few of which were synthesized.⁵⁻⁷⁾ The useful N-methylation of α -amino acid and peptide has been almost established by the several methods,⁸⁻¹¹⁾ but that of α -dehydroamino acid (DHA) and dehydropeptide (DHP) has not yet been investigated thoroughly. Because of more lability of DHA and DHP and of restriction, <u>e</u>. <u>g</u>., hydrolysis and geometric isomerization,¹²⁾ under currently employed procedures, it is necessary to establish the optimal conditions for the N-methylation of the various DHA and DHP.

In this paper, we wish to report on the synthesis of several N-methylated N-acyl-, N-benzyloxycarbonyl (Cbz)-, and N-(p)-toluenesulfonyl (Tos)-DHA esters $(\underline{1}-\underline{5})$ by the method of Rich <u>et al</u>⁷⁾ and the various synthetic routes for the selective methylation at 1-, 4-, and 1,4-positions of 3- and 3,6-dialkylidene-2,5-piperazinediones (PDO) by the reaction of PDO with methyl iodide¹³⁾ and by

the cyclization of DHA with methylamine. Moreover, 1-, 4-, and 1,4-dimethylated albonoursin, antibiotic albonoursin from the culture filtrate of <u>Streptomyces</u> <u>noursei</u>¹⁴⁾ and <u>S. thioluteus</u>¹⁵⁾ and its two analogs were also prepared here.

The reaction of the starting (Z)-2-N-substituted DHA esters¹⁶⁻¹⁸⁾ (<u>1-5</u>; 18.7 mmol) with 5 moles of methyl iodide and K_2CO_3 in DMF (50 ml) at room temperature for 48 hr was carried out to give the desired N-methylated DHA esters (<u>6-10</u>) in a <u>ca</u>. 84% yield. In the case of <u>2</u>, it was found that the halogen exchange between chlorine and iodine occurred to give (Z)-2-(N-methyl)iodoacetyl derivative (<u>7</u>). Subsequently, according to the usual method,¹⁷) the compound <u>7</u> (14.2 mmol) thus obtained was cyclized with gaseous ammonia in methanol (30 ml) to give colorless crystals, identified as 4-methyl-3-(Z)-alkylidene-PDO (<u>14</u>), in a 71% yield. On the other hand, 1-methyl isomer of <u>14</u> (<u>13</u>) was obtained as colorless crystals in an almost quantitative yield by the cyclization of ethyl (Z)-2-iodoacetyl-2-alkenoate (<u>11</u>; 5.57 mmol) with 3 moles of methylamine (made from MeNH₂-HCl and sodium) in methanol (30 ml) at room temperature for 2 hr.

Furthermore, the preparation of 1,4-dimethyl-3-alkylidene-PDO ($\underline{15}$) was pursued from the possible four synthetic routes successfully. The individual $\underline{13}$ and $\underline{14}$ (7.92 mmol) reacted readily with an equimolar amount of sodium hydride and 1.2 moles of methyl iodide (9.50 mmol) at room temperature for 1 hr to give the expected $\underline{15}$ as colorless crystals in 75% and 78% yields, respectively.

Compound Yield		No. 00	IR spec	trum, (cm ^{-1^{c)}}	NMR spectrum, 6 in CDC1 ₃			
No.	(%)		COOEt	NCO	C=C	-CH= (J _{Hz})	N-CH3		
<u>6d</u>	91	48-50 ^{a)}	1720	1670	1630	7.64	3.08		
<u>7b</u>	81	syrup	1735	1680	1655	7.05 (7.5)	3.08		
<u>7c</u>	84	syrup	1740	1680	1650	6.82 (10.5)	3.06		
<u>7d</u>	81	syrup	1725	1670	1635	7.68	3.13		
<u>8d</u>	86	107-108 ^{a)}	1720	1670	1640	7.20-7.70 ^{d)}	3.26		
<u>9c</u>	79	syrup	1725	1710	1650	6.58 (10.5)	3.07		
<u>10c</u>	84	syrup	1735		1650	6.81 (10.0)	2.99		
<u>10d</u>	83	126-128 ^{b)}	1720		1640	7.25-7.84 ^{d)}	3.12		

Table 1. Yields, physical constants, and spectral data of 6-10

a) Colorless prisms from hexane.
 b) Colorless prisms from AcOEt.
 c) Recorded
 in KBr.
 d) Overlapped on phenyl protons.

Table 2.	Yields,	physical	constants,	and	spectral	data	of	13-1	16
----------	---------	----------	------------	-----	----------	------	----	------	----

					-1		NMR spectrum, δ in CDCl ₃				
Compound	Yield	Mp °C	IR spe	ctrum,	cm –	in KBr	(in CF ₃	соон)	NH	
No.	(%)		NH	C=	0	C=C	-СН=	(J _{Hz})	N-CH3	(COCH ₃)	
<u>13a</u>	97	249-251 ^{d)}	3200	1680	1675	1635	6.63	(7.5)	3.28	9.88*	
<u>13b</u>	91	133-134 ^{e)}	3200	1705	1690	1650	6.14	(7.5)	3.06	9.34	
<u>13c</u>	91	187-189 ^{e)}	3200	1690	1680	1640	6.04	(10.0)	3.06	9.08	
<u>13d</u>	98	147-148 ^{f)}	3200	1705	1685	1645	6.96		3.04	8,16	
<u>14b</u>	71	89.5-90.5 ^{g)}	3180	1700	1660	1645	6.10	(7.5)	3.26	8.09	
14c	68	144-146 ^{h)}	3225	1700	1665	1645	6.00	(11.0)	3.29	7.98	
<u>14d</u>	75	176-177 ^{h)}	3300	17	00	1635	7.20		2,91	8.10	
<u>15b</u>	82 ^{a)}	syrup		1700	1690	1640	6.16	(7.5)	3.03		
<u>15c</u>	80 ^{b)}	111-112 ⁱ⁾		1690	1665	1640	6.03	(11.0)	3.04		
<u>15d</u>	86 ^{C)}	112-113 ^{g)}		16	95	1630	7.30		2.90		
<u>16a</u>	98	syrup		1720	1690	1650	6.10	(10.0)	3.11	(2.55)	
<u>16b</u>	93	161-163 ^{f)}		1710 1700	1690	1615	7.38		2.96	(2,65)	

a) Yield from <u>12</u>. 69% from <u>7</u>, 70% from <u>13</u>. b) Yield from <u>12</u>. 67% from <u>7</u>, 65% from <u>13</u>, 64% from <u>14</u>. c) Yield from <u>12</u>. 83% from <u>7</u>, 91% from <u>13</u>, 92% from <u>14</u>. d) Colorless needles from H₂O. e) Colorless prisms from AcOEt. f) Colorless needles from EtOH. g) Colorless needles from benzene-hexane. h) Colorless needles from AcOEt. i) Colorless needles from dibutyl ether.

On the other hand, compound $\underline{15}$ was also obtained in 73% and 83% yields, respectively, by cyclization of $\underline{7}$ with methylamine and by methylation of 3-alkylidene-PDO (12)¹⁷⁾ with methyl iodide in a similar manner as above.

The yields, physical constants, and spectral data of 6-10 and 13-15 are summarized in Tables 1 and 2, respectively.

From NMR spectral data of 13-15 and by comparison with the (E)-isomer of 12,¹⁹⁾ the comparatively lower chemical shifts of the exocyclic olefinic protons appeared at δ 6.00-7.30 region show unambiguously 13-15 to have (Z)-geometric structure. Therefore, the geometry of the starting olefins as well as the product (15) thus obtained was found to be maintained as (Z)-configurational structure.

Furthermore, for the condensation of <u>14</u> with aldehyde, the acetylation of <u>14</u> (12.4 mmol) with acetic anhydride (14 ml) was carried out under reflux for 2 hr to give 1-acetyl-4-methyl-3-alkylidene-PDO (<u>16</u>) quantitatively. The condensation of <u>16</u> (3.49 mmol) with 5 moles of appropriate aldehyde in <u>t</u>-butanol in the presence of 0.5M potassium <u>t</u>-butoxide (3.49 mmol) gave 4-methyl-3,6-dialkylidene-PDO (<u>17</u>) as colorless crystals in a <u>ca</u>. 52% yield. Further methylation of <u>17</u> (6.67 mmol) with 1.2 moles of methyl iodide (8.0 mmol) and an equimolar sodium hydride was worked up similarly to give the corresponding 1,4-dimethyl derivative (18).

Scheme 2

On the other hand, albonoursin $[3-(2)-isobutylidene-6-(2)-benzylidene-PDO]^{20-22}$ and its two naturally occurring analogs [3-(2)-, 6-(2)-dibenzylidene-PDO] and 3-(2)-p-anisilidene-6-(2)-benzylidene-PDO] $(\underline{19})^{15,23,24}$ were subjected to the direct methylation. As in the case of $\underline{13}$ and $\underline{14}$, compound $\underline{19}$ was worked up similarly with methyl iodide and sodium hydride to give $\underline{18}$ in a \underline{ca} . 73% yield, which was in complete agreement with one obtained from 17.

In consequence, the structurally interesting 1-, 4-, and 1,4-dimethyl derivatives of albonoursin and its two analogs could be prepared here.

The yields, melting points, and spectral data of <u>17</u> and <u>18</u> are listed in Table 3. Especially, in order to compare two olefin and methine protons between albonoursin²²⁾ and the other N-methylated analogs, the structure of four compounds are illustrated in Figure 1.

Table 3. Yields, physical constants, and spectral data of 17 and 18

Compound			Yield (%)		IR spectrum, cm ⁻¹ in KBr				NMR ^{h)}		
No.	R	R ¹	A ^{a)} B ^{b)}	мрс	NH	C=0	C≒	C	N-CH3	NH	
<u>17a</u>	i-C3H7	с ₆ н ₅	51	142-143 ^{e)}	3150	1690	1630	1615	3.38	8,30	
<u>17b</u>	с ₆ н ₅	і-С ₃ н ₇	52	165-166 ^{e)}	3160	1680	1640	1620	2.99	9.70	
<u>18a</u>	i-C3H7	с ₆ н ₅	62^{c} 72	125-126 ^{f)}	_	1690	16	30	2.90		
18b	с ₆ н ₅	с ₆ н ₅	74 . 77	138-139 ^{g)}	_	1680	16	15	3.37		
18c	с ₆ н ₄ -оме-р	с ₆ н ₅	70	140-142 ^{e)}		1685	16	20	3.00 3.05		

a) Yield from <u>17</u>. b) Yield from <u>19</u>. c) Yield from <u>17a</u>. d) Yield from <u>17b</u>.
e) Colorless needles from dibutyl ether. f) Colorless needles from hexane.
g) Colorless needles from diethyl ether. h) NMR spectrum, δ in CDCl₃.

-1577-

Figure 1

References

- Part 19. C. Shin, Y. Sato, H.Ohmatsu, and J. Yoshimura, <u>Bull. Chem. Soc</u>. Jpn., <u>54</u>, 1137 (1981).
- "Bioactive Peptides Produced by Microorganisms," ed by H. Umezawa, T. Takita, and T. Shiba, Kodansha, Tokyo (1978).
- 3) a) K. Noda and N. Izumiya, Kagaku, 33, 78 (1978).
 - b) Y. Shimohigashi and N. Izumiya, Yuki Gosei Kyokaishi, <u>36</u>, 1023 (1978).
- 4) W. L. Meyer, L. F. Kuyper, R. B. Lewis, G. E. Templeton, and S. H. Woodhead, <u>Biochem. Biophys. Res. Commun.</u>, <u>56</u>, 234 (1974).
- 5) K. Kakinuma and K. L. Rinehart, J. Antibiotics, 27, 733 (1974).
- N. Izumiya, S. Lee, T. Kanmera, and H. Aoyagi, <u>J. Am. Chem. Soc</u>., <u>99</u>, 8346 (1977).
- 7) D. H. Rich, P. Bhatnager, P. Mathiaparanam, J. A. Grant, and J. P. Tam, J. Org. Chem., <u>43</u>, 296 (1978).
- B. C. Das, S. D. Gero, and E. Lederer, <u>Biochem. Biophys. Res. Commun.</u>, <u>29</u>, 211 (1967).
- 9) K. L. Agarwal, G. W. Kenner, and R. C. Sheppard, <u>J. Am. Chem. Soc.</u>, <u>91</u>, 3096 (1969).
- 10) J. R. Coggins and N. L. Benoiton, <u>Can. J. Chem.</u>, <u>49</u>, 1968 (1971).
- 11) G. Marino and L. Valente, J. Chem. Soc. Chem. Commun., <u>1972</u>, 357.
- 12) C. Shin, Y. Sato, Y. Yonezawa, M. Hayakawa, and J. Yoshimura, presented at the 13th Congress of Heterocyclic Chemistry, Shizuoka, November, 1980.
- 13) J. Yoshimura, H. Nakamura, and K. Matsunari, <u>Bull. Chem. Soc. Jpn.</u>, <u>48</u>, 605 (1975).
- 14) A. S. Khokhlov and G. B. Lokshin, <u>Tetrahedron Lett.</u>, <u>1963</u>, 1881.
- 15) N. N. Gerber, J. Org. Chem., 32, 4055 (1967).
- 16) H. E. Carter, "Organic Reactions," Vol. 3, John wiley & Sons Inc., 1946, 198.
- 17) C. Shin, M. Fujii, and J. Yoshimura, <u>Tetrahedron Lett.</u>, <u>1971</u>, 2499.
- 18) Y. Yonezawa, C. Shin, Y. Ono, and J. Yoshimura, <u>Bull. Chem. Soc. Jpn.</u>, <u>53</u>, 2905 (1980).
- 19) C. Shin, M. Hayakawa, T. Suzuki, A. Ohtsuka, and J. Yoshimura, <u>Bull. Chem</u>. <u>Soc. Jpn.</u>, <u>51</u>, 550 (1978).
- 20) C. Shin, Y. Chigira, M. Masaki, and M. Ohta, Tetrahedron Lett., 1967, 4601.
- 21) C. Shin, Y. Chigira, M. Masaki, and M. Ohta, <u>Bull. Chem. Soc. Jpn.</u>, <u>42</u>, 191 (1969).
- C. Shin, M. Hayakawa, K. Mikami, and J. Yoshimura, <u>Tetrahedron Lett</u>., <u>1977</u>, 863.
- 23) T. Sasaki, Chem. Ber., 54, 163 (1921).
- 24) C. Shin, M. Hayakawa, H. Kato, K. Mikami, and J. Yoshimura, <u>J. Chem. Soc.</u>, Perkin I, <u>1980</u>, 419.

Received, 14th May, 1981