THE SYNTHESIS OF 9H-IMIDAZO[1,2-a][1,3]DIAZEPINES

Takushi Kurihara*, Tsutomu Tani, and Keiko Nasu
Osaka College of Pharmacy, 2-10-65, Kawai, Matsubara, Osaka 580, Japan

Abstract — Ethyl 7-acetyl-2,3-diphenyl-9H-imidazo[1,2-a][1,3]-diazepine-5-carboxylate (§) and its acetate (7) were synthesized via the ring-expansion reaction of ethyl 5a-acetyl-4a,5a-dihydro-2,3-diphenyl-5H-cyclopropa[4a,5a]imidazo[1,2-a]pyrimidine-4a-carboxylate (§).

Relatively little work has been carried out on 1,3-diazepines with a benzene ring fused to the diazepine system¹⁾. A few derivatives of pyrimido[2,1-b][1,3]-diazepine have been prepared²⁾. The synthesis of bicyclic guanidines such as 5,6,7,8-tetrahydro-³⁾ or 2,3,5,6,7,8-hexahydro-1H-imidazo[1,2-a][1,3]diazepine⁴⁾ derivatives, some of which showed the anticonvulsant and hypoglycemic activity, has also been reported. However, to our knowledge, 9H-imidazo[1,2-a][1,3]diazepines have not hitherto been reported. In this communication, we report the synthesis of the title compounds via the ring-expansion of cyclopropaimidazopyrimidine (2).

Recently, we reported⁵⁾ the synthesis and ring transformation reaction of 6H-cyclopropa[5a,6a]pyrazolo[1,5-a]pyrimidines, which were readily obtained by the reaction of 6-acetyl-7-ethoxycarbonylpyrazolo[1,5-a]pyrimidine-3-carbonitrile with diazomethane under ice-cooling. Thus, we selected ethyl 6-acetyl-2,3-diphenyl-imidazo[1,2-a]pyrimidine-5-carboxylate (1) as a starting material for the synthesis of the title compounds. The compound 1 was synthesized by condensation of ethyl 3-ethoxymethylene-2,4-dioxovalerate with 2-amino-4,5-diphenylimidazole⁶⁾ in refluxing ethanol in 86 % yield. Treatment of 1 with a large excess of diazomethane under ice-cooling gave ethyl 5a-acetyl-4a,5a-dihydro-2,3-diphenyl-5H-cyclopropa-[4a,5a]imidazo[1,2-a]pyrimidine-4a-carboxylate (2) [mp 193-195°; v max. (KBr) cm⁻¹: 1750, 1720, 1660; & (DMSO-d₆): 0.85 (3H, t, J=7 Hz, CH₂CH₃), 1.85 and 2.75 (each 1H, each d, J=6 Hz, CH₂), 2.39 (3H, s, COCH₃), 3.20-3.70 (2H, m, CH₂CH₃), 7.10-7.60 (10H, m, Ar-H), 8.61 (1H, s, C₆-H)] in 73 % yield.

Next, hydrogenolytic ring-expansion reaction of 2 was examined. Catalytic hydrogenation of 2 over PtO2 under atmospheric pressure in dioxane gave 6,7dihydro compound (3), mp $247-249^{\circ}$ (CH₃CN). The NMR spectrum (DMSO-d₆) of 3 showed the presence of cyclopropane ring protons at δ 1.92 and 2.36 (each 1H, each d, J=6 Hz). On the other hand, when catalytic hydrogenation of 2 was carried out over 5 % Pd-C under the same condition, ethyl 7-acetyl-5,6-dihydro-2,3-diphenyl-9H-imidazo[1,2- \underline{a}][1,3]diazepine-5-carboxylate (4), mp 216-218° (EtOH) (Found : C, 72.08; H, 5.71; N, 10.51. $C_{24}H_{23}N_3O_3$ requires C, 71.80; H, 5.78; N, 10.47), was interestingly obtained in 66.3 % yield. The spectral data [ν max. (KBr) cm⁻¹: 3200-2600, 1750, 1610; λ max. (EtOH) nm (log ϵ): 248 (4.19), 332 (4.26); δ $(DMSO-d_6)$: 1.13 (3H, t, J=7 Hz, CH_2CH_3), 1.78 (3H, s, $COCH_3$), 2.45 (1H, br d, \underline{J} =15 Hz, C_6 -H), 3.90 (1H, d d, \underline{J} =15, 6 Hz, C_6 -H), 3.90-4.30 (2H, m, \underline{CH}_2CH_3), 4.90 (d d, \underline{J} =3, 6 Hz, C_5 -H), 6.76 (1H, br s, C_8 -H), 7.10-7.50 (10H, m, Ar-H), 12.55 (1H, br s, NH)] established its structure. An attempt to direct preparation of ethyl 7-acetyl-2,3-diphenyl-9H-imidazo[1,2-a][1,3]diazepine-5-carboxylate (8) from 4 with DDQ oxidation was unsuccessful, only a tarry mixture being obtained. Thus, compound 4 was acetylated with acetic anhydride and pyridine to obtain 5, mp 158-160°. The fact that an attractive signal was seen in its NMR spectrum at δ 8.28⁷⁾ as singlet assignable to C_8 -proton shifted downfield by the effect of N-acetyl group would strongly support the structure of 4. The acetate reacted with 1.2 equivalent moles of NBS in CCl_4 in the presence of benzoyl peroxide to give ethyl 6-bromo-7,9-diacetyl-5,6-dihydro-2,3-diphenyl-9H-imidazo[1,2-a][1,3]diazepine-5-carboxylate (6), mp 150-154° (benzene-ligroin), in a quantitative yield. Since the NMR spectrum of 6 revealed C_5 - and C_6 -protons as two sets of doublets at δ 4.97 and 5.81 with a coupling constant of 5 $\mbox{Hz}^{\,8)}{}$, the configuration of 6 was characterized as trans. Treatment of 6 with triethylamine in refluxing benzene afforded ethyl 7,9-diacetyl-2,3-diphenyl-9H-imidazo[1,2-a][1,3]diazepine-5-carboxylate (7) as pale yellow crystals, mp 206-208°(EtOH), in 47.3 % yield. Dehydrobromination of ξ with DBU⁹⁾ to ζ was achieved more readily. Thus, a mixture of 6 and an equimolar amount of DBU in benzene was stirred at room temperature for 10 min, and 7 was isolated in 73 % yield. Compound 7, on treatment with basic Al₂O₃ in refluxing benzene, underwent hydrolysis of N-acetyl group to give 8 as red crystals, mp 303-305° (CH₃CN) (Found : C, 71.99; H, 5.31; N, 10.54. $c_{24}^{\rm H}_{21}^{\rm N}_{3}^{\rm O}_{3}$ requires C, 72.16; H, 5.30; N, 10.52) in 40 % yield. The structure

 $\frac{4}{2}$: R= X= H

5 : R = Ac ; X = H

6 : R = Ac ; X = Br

CO₂Et

N Ph

N Ph

7 : R = Ac

8 : R=H

determination of $\frac{7}{5}$ and $\frac{8}{5}$ were performed on the basis of spectral data as summarized in Table.

Spectral Data of 9H-Imidazo[1,2- \underline{a}][1,3]diazepines (7 and 8)

Compd. No.	ν max.(KBr) cm ⁻¹	λ max. (CH ₂ CN	δ (DMSO-d ₆)				Mass
		(log ε) nm	СО ₂ СН ₂ СН ₃ СОСН ₃ (<u>J</u> =7 Н2)	с ₆ -н	Ar-H	С8-Н	(m/z)
7	1720	238 (4.47)	0.96(3H, t)2.48	*	7.10-7.50 (11H, m)	8.00	
	1700	278 (4.27)	3.65(2H, q)2.50				441 (M ⁺)
	1680	348 (3.16)					
8 ~	3200-2600	248 (4.26)	0.84(3H, t)2.55	6.92	7.00-7.60 (11H, m)	*	399 (M ⁺)
	1710	292 (4.23)	3.55(2H, q)				
	1650	427 (2.97)					

^{*} Overlapped with benzene ring protons

We thank Dr. A. Numata and Mrs. Y. Tsukamoto of our college for measurements of NMR spectra and for microanalysis, respectively.

References and Notes

- F.D. Popp and A.C. Noble, "Advances in Heterocyclic Chemistry", Vol 8, ed. by A.R. Katritzky and A.J. Boulton, Academic Press, New York and London, p. 21, 1967.
- 2) T. Yamamoto, M. Muraoka, and T. Takeshima, J. Chem. Res. (S), 1979, 384.
- 3) K. Nagarajan, J. David, S.J. Shenoy, and H.G. Gokhale, <u>Indian J. Chem. Sect. B</u>, 16B(3), 226 (1978).
- 4) A. Kosasayama, T. Konno, K. Higashi, and F. Ishikawa, Chem. Pharm. Bull., 27, 841, 848 (1979).
- 5) T. Kurihara, T. Tani, and K. Nasu, Heterocycles, 15, 265 (1981).
- 6) T. Nishimura and K.Kitajima, J. Org. Chem., 44, 818 (1979).
- 7) T. Kurihara, T. Tani, K. Nasu, M. Inoue, and T. Ishida, Chem. Pharm. Bull., accepted.
- 8) N.S. Bhacca and D.H. Williams, "Applications of NMR Spectroscopy in Organic Chemistry", Holden-Day, Inc., p. 49, 1964.
- 9) H. Oediger and Fr, Möller, Angew. Chem. Internat. Ed., 6, 76 (1967).

Received, 15th June, 1981