ON CARDIOACTIVE STEROIDS V.¹ SYNTHESIS OF THE PYRIDONE ANALOGUE OF BUFALIN

Min-Jen Shiao, Thomas Y. R. Tsai, and Karel Wiesner^{*} Natural Products Research Centre, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6E2

<u>Abstract</u> -- An efficient and simple synthesis of azabufalin (2) from compound (4) derived from testosterone is reported.

The recent communication of Wicha and Masnyk² on the synthesis of the pyridone derivative (1) prompts us to report the preparation of azabufalin (2) which we have completed about a year ago.³ The fact that the Polish authors chose to report their work serves to underline the difficulty inherent in setting up simultaneously both the β -configuration at C_{17} and the substitution and natural configuration at C_{14} . It will be clear from the sequel that our general synthetic strategy⁴ which we have developed for the synthesis of cardenolides can overcome this difficulty very simply.

The lithium derivative (3) was prepared by treatment of 5-bromo-2-methoxypyridine⁵ with n-butyllithium in ether at -70°C. Addition of the ketone (4)⁴ to this solution of (3) yielded compound (5), mp 109-111°C (85% after recrystallization from hexane-ether);[†] pmr (CDCl₃): $\delta = 0.88$ (s, 3H, 19-CH₃), 1.07 (s, 3H, 18-CH₃), 3.93 (s, 3H, OCH₂).

Acetylation of (5) with acetic anhydride and pyridine in the presence of 4dimethylaminopyridine yielded the acetyl derivative (6), mp 161-163°C (crystallized from methanol, yield 91%); ir (CHCl₃): 1735 CM⁻¹ (C=O).

[†]All compounds gave correct molecular ions in mass spectrometry and spectral data consistent with the structures assigned to them. All crystalline compounds gave acceptable C, H, O, N elemental analyses.

-1879-

(5)

(§)

ОМе

-H

[R = H]

[R =

ъН

(8) ~

2

Мe

он

(11)

.

The allylic rearrangement of compound (6) was accomplished by reflux in aqueous acetone in the presence of $CaCO_3$ for 48 h. The product (7) (mp 94-95°C) [pmr (CDCl₃): δ = 3.93 (s, 3H, OCH₃), 4.54 (broad s, 1H, C₁₅H), 5.95 (d, 1H, J = 3 Hz, C₁₆H)] was obtained in a yield of 84% after crystallization from ether-hexane.

The allylic alcohol (7) was hydrogenated in ethanol over 10% Pd/CaCO₃. The dihydro derivative (8) was obtained as a foam in a yield of 96%. Elimination of the C₁₅ hydroxyl in compound (8) was accomplished by treatment with methane-sulfonyl chloride in pyridine. The reaction was fully regiospecific and gave the olefin (9) (mp 94-95°C) in a yield of 85% after crystallization from acetone [pmr (CDCl₃): δ = 3.93 (s, 3H, OCH₃), 5.3 (broad s, 1H, C₁₅H)].

The olefin (9) was treated with N-bromosuccinimide in aqueous acetone at room temperature for 30 min and the crude bromohydrin was stirred with alumina in a mixture of acetone and CH_2Cl_2 . The β -epoxide (10) (mp 140-141°C)^{††} [pmr (CDCl_3): $\delta = 0.62$ (s, 3H, 18-CH_3), 0.98 (s, 3H, 19-CH_3), 3.51 (broad s, 1H, C_{15} H), 3.90 (s, 3H, OCH₃)] was obtained in a yield of 74% after crystallization from hexane-ether.

Reduction of the epoxide (10) with LiAlH₄ in tetrahydrofuran under reflux gave the 14β-alcohol (11) (mp 103°C) [ir (CHCl₃): 3616 cm⁻¹ (-OH); pmr (CDCl₃): $\delta = 0.57$ (s, 3H, 18-CH₃), 0.94 (s, 3H, 19-CH₃), 3.91 (s, 3H, OCH₃)] in a yield of 74% after crystallization from ether-hexane.

Compound (11) was refluxed for 24 h with potassium carbonate and benzyl bromide in acetone. The N-benzylpyridone derivative (12) (mp 256-257°C) [uv λ_{max}^{MeOH} : 233 nm (ϵ = 10,340), 312 nm (ϵ = 5,311); ir (CHCl₃): 3612 (OH), 1665 cm⁻¹ (CON); pmr (CDCl₃): δ = 4.47 (s, 2H, -O-CH₂-Ph), 5.08 (s, 2H, N-CH₂-Ph)] was obtained in a yield of 52% besides 40% recovered starting material and recrystallized from CH₂Cl₂-ether.

^{††}The α -epoxide of compound (9) (mp 164°C) was obtained by the action of mchloroperbenzoic acid and it was converted to the β -epoxide (10) via the 14 β , 15 α -diol (mp 96°C). Finally, hydrogenation of compound (12) over palladium on charcoal in a mixture of dioxane and ethanol removed both benzyl groups and yielded the desired azabufalin (2) (mp 299-301°C) [uv λ_{max}^{MeOH} : 231 nm (ε = 12,360), 307 nm (ε = 6,161); ir (KBr): 1658 cm⁻¹ (CON); pmr (CDCl₃-DMSO-d₆): δ = 0.60 (s, 3H, 18-CH₃), 0.92 (s, 3H, 19-CH₃), 6.30 (d, 1H, J = 9 Hz, C₂₃H), 7.12 (broad s, 1H, C₂₁H), 7.75 (poorly resolved dd, 1H, C₂₂H)⁺⁺⁺ which was recrystallized from methanol-ether.

ACKNOWLEDGEMENTS

The financial support by the Canadian Heart Foundation, the Natural Sciences and Engineering Research Council of Canada, and Advance Biofactures Corporation, New York, is gratefully acknowledged.

REFERENCES

- For Communication IV, see R. Marini-Bettolo, P. Flecker, T. Y. R. Tsai, and K. Wiesner, Can. J. Chem., 1981, 59, 1403.
- 2. J. Wicha and M. Masnyk, <u>Heterocycles</u>, 1981, 16, 521.
- 3. Cf. M. J. Shiao, Ph.D. Thesis, University of New Brunswick, submitted Spring 1981.
- 4. T. Y. R. Tsai, A. Minga and K. Wiesner, Heterocycles, 1979, 12, 1397.
- 5. E. Spinner and J. C. B. White, <u>J. Chem. Soc. (B)</u>, 1966, 991.

⁺⁺⁺In a number of more soluble derivatives of this series a doublet of doublets (J = 9 Hz and 3 Hz) in good agreement with reference (2) was found for the C₂₂ hydrogen.

Received, 13th June, 1981