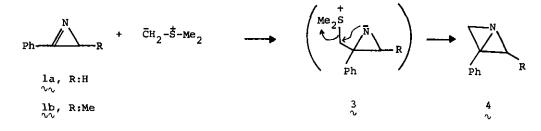
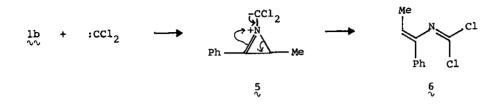
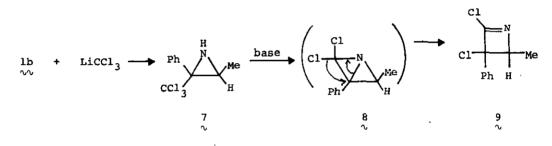

PEROXIDATION OF AZIRINES. A SEARCH FOR OXAZABICYCLOBUTANES.¹

Alfred Hassner*, Benjamin A. Belinka, Jr. and Alvin S. Steinfeld Department of Chemistry, State University of New York at Binghamton, Binghamton, New York USA 13901

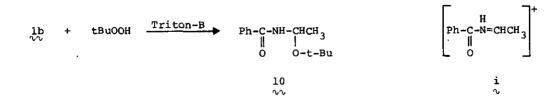

Abstract: Nucleophilic as well as electrophilic epoxidation of azirines leads to N-acylimines or their derivatives, possibly by way of an *o*xazabicyclobutane.

INTRODUCTION

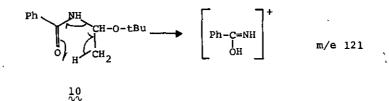

In the last few years the chemistry of azirines $\frac{1}{2}$ has received considerable attention, especially since these compounds can serve as synthons for a variety of other heterocyclic molecules.² These strained small ring heterocycles ($\frac{1}{2}$) can behave as both electrophiles or nucleophiles with appropriate reagents. Among the interesting reactions that azirines $\frac{1}{2}$ undergo is the formation of the strained azabicyclobutane compounds $\frac{4}{2}$. Early attempts to prepare azabicyclobutanes $\frac{4}{2}$ by reaction of azirines $\frac{1}{2}$ with diazo compounds³ generated allyl azides, presumably via cycloaddition to an intermediate 2. However, treatment of $\frac{1}{2}$ with


trimethylsulfonium ylid leads, most likely via 3, to isolation of azabicyclobutanes 4. 4,5

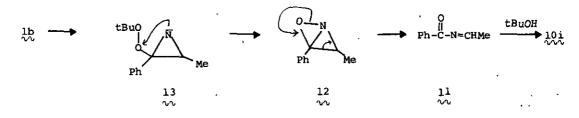
On the other hand, dichlorocarbene (generated by decomposition of phenylmercuric trichloromethane) reacts with 1b, presumably via intermediate 5 to produce open chain dichloroimines 6.5


The formation of azetine $\frac{9}{2}$ has been postulated to proceed via the isolable adduct 7 and the nonisolable intermediate azabicyclobutane 8.⁵

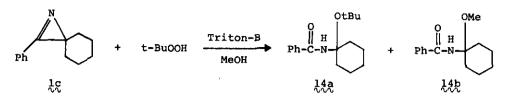
Heterocyclic analogs of $\frac{4}{2}$ have, so far, been elusive. Attempts to epoxidize azirine $\frac{1}{2}$ with <u>m</u>-chloroperbenzoic acid in methylene chloride to an oxazabicyclo-butane were unsuccessful and led to an inseparable mixture of products.⁶


RESULTS AND DISCUSSION

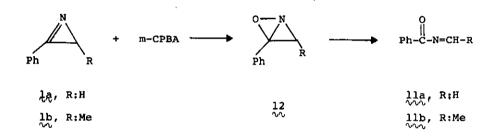
We felt that nucleophilic addition of a peroxide anion to $\frac{1}{\sqrt{2}}$ (in analogy to $\frac{1}{\sqrt{2}} + \frac{3}{\sqrt{2}}$ + $\frac{4}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}} + \frac{7}{\sqrt{2}} + \frac{8}{\sqrt{2}}$) may have a better chance for success. Indeed, <u>t</u>-butyl hydroperoxide reacts with $\frac{1}{\sqrt{2}}$ in the presence of Triton-B to produce a neutral compound (21%) identified as N-(1-<u>t</u>-butoxy ethyl)benzamide $\frac{10}{\sqrt{2}}$ and 2,5-dimethyl-3,6-diphenylpyrazine (9%). The latter probably arose from a hydrolysis-dimerization of the azirine 1b.


HETEROCYCLES, Vol 18, 1982

The structure of 10 was obvious from its elemental analysis, ir at 3350 (NH), and 1650 cm⁻¹ (C-N), nmr and mass spectra. The H-nmr spectrum showed a broad one proton $\stackrel{0}{}$ singlet for the NH at δ 7, which disappeared on D₂O addition; a one proton multiplet at 5.8-6.2 and a CH₃ doublet, J=6 Hz at 1.48, in addition to the aromatic and <u>t</u>-butyl signals. Though no M⁺ peak was noticed in the mass spectrum, a major peak (40%) resulting from fragmentation to <u>i</u> (m/e 148) was present, as well as a 121 peak (1%) resulting from a McLafferty rearrangement of 10; the base peak was at m/e 105 (Ph-C+).



Treatment of 10 with 2,4-dinitrophenylhydrazine gave an orange solid, mp $163-6^{\circ}$, identical b₁ ir to authentic acotaldohyde 2,4 dinitrophonylhydrazone and indicative of the acetaldehyde aminal structure of 10.


Since the lability of N-acylimines toward alcohols is well known,⁷ it is reasonable to assume that 10 resulted from <u>t</u>-butanol addition to the precursor 11. The latter may have resulted from a ring opening of oxazabicyclobutane 12 as shown \mathcal{V}_{V} below:

While azabicyclobutanes $\frac{4}{\sqrt{2}}$ usually undergo preferred ring opening at the center bond between the two rings, the weakest bond in $\frac{12}{\sqrt{2}}$ is expected to be the N-O bond. 3,3-Disubstituted azirines behave in the same manner. Thus, products $\frac{14}{\sqrt{2}}$, analo-'gous to $\frac{10}{\sqrt{2}}$, were formed in the reaction of azirine 1c with <u>t</u>-butyl hydroperoxide in base.

The intermediacy of N-ethylidenebenzamide 11 in the formation of 10 was ascertained by its isolation (59% yield) in the electrophilic exposidation of 1b with m-chloroperbenzoic acid (m-CPBA) in chlorobenzene. The structure of 11 was indicated by its mass spectrum (molecular ion at m/e 147 (38%), base peak at m/e 105 (Ph-C-)) and the nmr spectrum (methyl doublet at δ1.9 and six proton multiplet 0 at 7.1-7.7). A similar reaction took place with azirine 1a.

Addition of <u>t</u>-butanol to <u>llb</u> at room temperature or to the reaction mixture of <u>lb</u> with <u>m_CPBA</u> led to the isolation of the <u>t</u>-butoxy ether <u>l0</u>. While the formation of <u>ll</u> in the nucleophilic reaction of azirine <u>l</u> with <u>t</u>-butylperoxide anion can be explained by a decomposition⁸ of <u>l3</u> without invoking oxazabicyclobutane <u>l2</u>, its generation also in the electrophilic reaction with <u>m-CPBA</u> lends strength to the involvement of <u>l2</u> as an intermediate⁹ in these transformations. A similar intermediate is apparently involved in the <u>M-CPBA</u> oxidation of diazirines.¹⁰

EXPERIMENTAL

Reaction of 2-Phenyl-1-azirine with <u>m</u>-Chloroperoxybenzoic Acid. A solution of 200 mg (1.3 mmol) of 2-phenyl-1-azirine la and 0.24 g (1.4 mmol) of <u>m</u>-chloroperoxy benzoic acid in 20 ml of chlorobenzene was stirred magnetically and heated to reflux for 20 hr. The solution was washed with a 2 x 20 ml of saturated NaHCO₃ and the chlorobenzene was dried with anhydrous MgSO₄, filtered and the solvent was removed by distillation to give 98 mg (0.73 mmol) of N-methylenebenzamide $\frac{11a}{200}$, as a colorless liquid. Vapor phase chromatographic analysis on a 20% Carbowax column at 100°C showed one peak which was collected and analyzed by mass spectroscopy. Molecular ion peak at m/e 133 (41%); other peaks at m/e 105 (100%) and m/e 77 (35%). The nmr showed a multiplet at δ 7.1-7.6.

Reaction of 2-Phenyl-3-methyl-1-azirine with <u>m</u>-Chloroperoxybenzoic Acid. A solution of 200 mg (1.3 mmol) of 2-phenyl-3-methyl-1-azirine 1b and 0.24 g (1.4 mmol) of <u>m</u>-chloroperoxybenzoic acid in 20 ml of chlorobenzene was stirred magnetically and heated to reflux for 20 hr. The solution was washed with a 2 x 20 ml of saturated NaHCO₃, the chlorobenzene layer was dried with anhydrous MgSO₄, filtered, and the solvent was removed by distillation to give 121 mg of Nethylidenebenazmide 11b as a red oil. Vapor phase chromatographic analysis on a 20% Carbowax column at 100°C showed one peak which was collected and analyzed by mass spectroscopy. Molecular ion peak at m/e 147 (38%); other peaks at m/e 105 (100%) and m/e 77 (41%). The nmr (acetone-d6/CCl₄) showed a six proton multiplet at δ 7.1-7.7 and a three proton doublet at δ 1.9.

When 1 g (13 mmol) of <u>t</u>-butanol was added during the reaction, $l'-\underline{t}$ -butoxyethylbenzamide 10 was separated by gc in 18% yield; treatment of <u>l</u> with <u>t</u>-butanol likewise produced <u>l</u> .

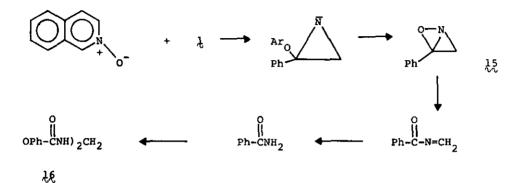
General Procedure for the Reaction of 1-Azirines with <u>t</u>-Butyl Hydroperoxide in <u>Triton B.</u> To 1.31 g (10 mmol) of 2-phenyl-3-methyl-1-azirine lb in 20 ml of benzene was added 1.2 ml (10.8 mmol) of <u>t</u>-butyl hydroperoxide. After addition of 0.4 g (2.3 mmol) of "Triton B" (40% in MeOH), the mixture was allowed to stand for a 24 hr period. The reaction mixture was then washed twice with 30 ml of water, dried with anhydrous MgSO₄, filtered and the benzene was removed under vacuum to give an oil which upon cooling to -10° C yielded 0.46 g (21%) of l'-<u>t</u>butoxyethylbenzamide <u>10</u>. Recrystallization from diethyl ether/pentane provided further purification of this amide (mp 105-106°), nmr (CDCl₃) δ 7.2-8 (five proton multiplet), δ 5.9 (two proton wide singlet), δ 6.8-7.2 (broad one proton singlet, replaced when D₂O was added), δ 5.8-6.2 (one proton multiplet), δ 1.48 (three proton doublet, J=6 Hz), and δ 1.28 (nine proton singlet). IR (KBr) showed peaks at 3350, 1650 and 1535 cm⁻¹. Mass spectrum m/e (rel. intensity) 148 (40.5), 121 (1.2), 105 (100), 77 (29), 57 (4.0), 43 (9.0). Anal. Calcd. for C₁₃H₁₉NO₂: C, 70.55; H, 8.65; N, 6.33

Found: C, 70.66; H, 8.72; N, 6.35

The filtrate from recrystallization of $\frac{10}{10}$ was allowed to stand at $-10^{\circ}C$ for seven days during which time 0.21 g/9% yield of 2,5-dimethyl-3,6-diphenylpyrazine precipitated. Reaction of 0.46 g of 2-phenyl-3,3-pentamethylene-1-azirine with <u>t</u>-butyl hydroperoxide following the general procedure gave 0.57 g of a clear oil which on chromatography provided 45 mg of starting azirine, 170 mg of N-(1 -<u>t</u>-butoxycyclohexyl)benzamide 14a, ir 3400 cm⁻¹(NH); 1655 and 1522 cm⁻¹(amide); nmr δ 7.2-7.9 (m, 5H), δ 6.36-6.68 (S broad, 1H), δ 1.4-2.6 (m, 10H), δ 1.28 (S, 9H), and 85 mg of

N-(l-methoxycyclohexyl)benzamide 14b, ir 3340 cm⁻¹(NH); 1645 and 1530 cm⁻¹(amide); nmr δ7.3-7.9 (m, 5H), δ6.0-6.25 (S broad 1H), δ3.3 (S, 3H), δ1.18-2.5 (m, 10H); m/e 202 (M-OMe)⁺.

ACKNOWLEDGEMENT: This research was supported by FHS Grant CA 19203 from the National Cancer Institute. A Meyerhoff Fellowship (to A.H.) from the Weizmann Institute of Science is gratefully acknowledged.


DEDICATION

Dedicated with great admiration to Professor Herbert C. Brown on the occasion of his 70th Birthday.

REFERENCES

- Small Rings 27. For the previous paper in this series see A. Hassner, R.
 D'Costa, A.T. McPhail and W. Butler, <u>Tetrahedron Letters</u>, 1981, in press.
- cf.D.J. Anderson and A. Hassner, <u>Synthesis</u>, 1975, 483; A. Hassner, <u>Hetero-</u> cycles, 1980, 14, 1517, and references cited therein.
- 3. a) A.L. Logothetis, J. Org. Chem., 1964, 29, 304a;
 - b) V. Nair, <u>J. Org. Chem.</u>, 1968, 33, 2121.
 - c) J.H. Bowie, B. Nussey and A.D. Ward, Aust. J. Chem., 1973, 26, 2547.
- 4. A.G. Hortmann, D.A. Robertson, J. Am. Chem. Soc., 1972, 94, 2758.
- A. Hassner, J.O. Currie, A.S. Steinfeld, R.F. Atkinson, J. Am. Chem. Soc., 1973, 95, 2982.
- 6. A. Hassner and A.S. Steinfeld, University of Colorado, unpublished results.
- See for instance, S.W. Breuer, T. Bernath and D. Ben-Ishai, <u>Tetrahedron</u>, 1967, 23, 2869.

 It is equally plausible that the reaction of quinoline-N-oxides with azirines l to form 16, A. Padwa and K. Crosby, <u>J. Org. Chem.</u>, 1974, 39, 2651, proceeds via an oxazabicyclobutane intermediate 15;

- 9. D.H. Aue and D. Thomas, J. Org. Chem., 1974, 39, 3855, have detected an oxazabicyclopentane as an unstable intermediate in the m-CPBA oxidation of a 4-membered ring azetine.
- 10. M-T.H. Lin and I. Yamamoto, Can. J. Chem., 1979, 57, 1299.

Received, 5th October, 1981