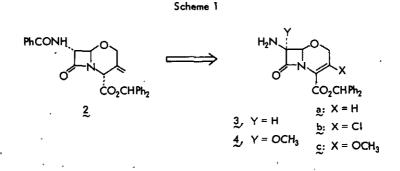
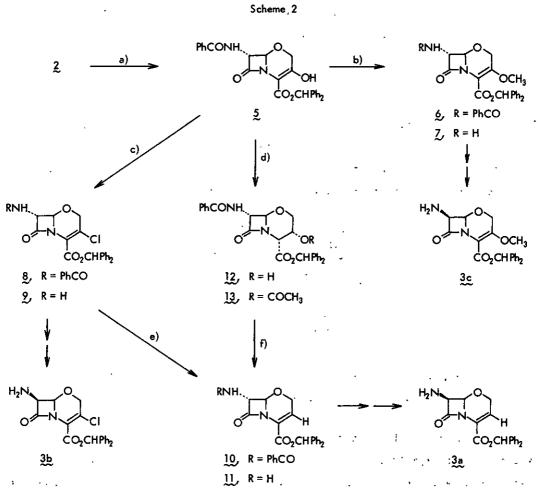
IMPROVED SYNTHESIS OF 3'-NOR-1-OXACEPHEMS<sup>†</sup>

Tsutomu Aoki,\* Kyoji Minami, Tadatoshi Kubota, Yoshio Hamashima, and Wataru Nagata Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

<u>Abstract</u> — Several improved synthetic routes to  $7\alpha$ -unsubstituted and  $7\alpha$ -methoxylated 3<sup>1</sup>-nor-1-oxacephems, 3 and 4, from  $7\alpha$ -benzoylamino-3-methylene-1-oxacepham 2 were established.


In 1972 Scartazzini and Bickel<sup>1</sup> reported synthesis of 3-unsubstituted cephem compound <u>la</u> which represented the first example of the 3'-nor type of cephalosporins showing significant antibacterial activity. Since then much interest has been focused on the synthesis of this type of cephalosporins<sup>2</sup> and several clinically useful antibiotics, such as cefaclor,<sup>3</sup> <u>lb</u>, cefroxadine,<sup>1</sup> <u>lc</u>, and ceftizoxime,<sup>4</sup> <u>ld</u>, have been discovered. With this background it was highly expected that some useful 3'-nor type compounds could be found in the 1-oxacephem series. Synthesis of 3'-nor-1-oxacephems was thus undertaken in our laboratories and the first successful routes, though rather lengthy, were already reported.<sup>5</sup> Very recently synthesis and antibacterial activity of 3-unsubstituted 1-oxacephems with a variety of 78- side chains of the ceftizoxime type have been

RCONH  


$$RCONH$$
  
 $RCONH$   
 $R =$   
 $R =$ 

<sup>†</sup> Dedicated to Dr. Herbert C. Brown, Emeritus Professor of Purdue University, on the occasion of his 70th birthday. reported by the Fujisawa group.<sup>6</sup>

In this paper we wish to describe improved synthetic routes to  $7\alpha$ -unsubstituted and  $7\alpha$ -methoxylated 3'-nor-1-oxacephem nuclei, 3 and 4, from  $7\alpha$ benzoylamino-3-methylene-1-oxacepham derivative 2, a key intermediate in the synthesis of our recently developed  $\beta$ -lactam antibiotic 6059-S (latamoxef or moxalactam).<sup>7</sup>



Ozonolysis of 2 and subsequent reduction gave 3-hydroxy-3-cephem 5 in almost quantitative yield. The enol structure of the 3-oxo group in this compound is assigned on the basis of its spectral data [IR (CHCl<sub>3</sub>) 3440, 3330 cm<sup>-1</sup> (3-OH hydrogenbonded with 4-ester oxygen); NMR (CDCl<sub>2</sub>)  $\delta$  11.03 (enol H)]. In contrast with the case of the corresponding 1-thia analogs<sup>2b</sup> no careful control of the reaction conditions (amount of ozone, reaction temperature, etc.) was necessary owing to lack of the 1-sulfur atom which is very sensitive to various oxidation reagents or more generally various electrophiles. Whereas methylation of 5 with diazomethane proceeded well to give 6 (IR (CHCl<sub>3</sub>) 3370, 1780, 1710, 1665, 1625 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  3.65 (3H, s, C<sub>3</sub>-OCH<sub>3</sub>), 4.37 (2H, d, J = 16 Hz, .  $C_2$ -H), 4.75 (1H, s,  $C_6$ -H), 5.13 (1H, d, J = 7 Hz,  $C_7$ -H), 6.83 (1H, s, CHPh<sub>2</sub>), 7.2-8.0 (16H, m,  $C_6H_5$ , NH)] in guantitative yield, chlorination or O-mesylation worked rather sluggishly in contrast with the smooth conversion of the corresponding (1-thia)cephem analogs:<sup>2C,2d</sup> every attempt to obtain the O-mesyl derivative of 5 failed and only the use of chlorine-triphenylphosphine complex and triethylamine was found effective to afford 3-chloro-1-oxacephem 8 [NMR  $(CDCl_3) \delta 4.32 (2H, s, C_2-H), 4.75 (1H, s, C_6-H), 5.22 (1H, d, J = 8 Hz, C_7-H),$ 6.87 (1H, s, CHPh<sub>2</sub>), 7.2-8.1 (16H, m, C<sub>6</sub>H<sub>5</sub>, NH)] in 30% yield. This compound underwent dechlorination with zinc and acetic acid to give 3-unsubstituted 1-



a)  $O_3/CH_2CI_2-MeOH$ , -78°; Zn-HOAc b)  $CH_2N_2$  c)  $Ph_3P \cdot CI_2/(C_2H_5)_3N/THF$  d)  $B_2H_6/THF$ e) Zn-HOAc f)  $M_5CI/(C_2H_5)_3N$ 

oxa-3-cephem 10 [IR (CHCl<sub>3</sub>) 3380, 1790, 1730, 1670 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  4.23 (2H, br s, C<sub>2</sub>-H), 4.88 (1H, s, C<sub>6</sub>-H), 5.22 (1H, d, J = 8 Hz, C<sub>7</sub>-H), 6.27 (1H, br s, C<sub>3</sub>-H), 6.90 (1H, s, CHPh<sub>2</sub>), 7.1-8.3 (16H, m, C<sub>6</sub>H<sub>5</sub>, NH)] in high yield.<sup>8</sup> An alternative and clearly better route to this compound involves diborane reduction<sup>2b</sup> of 5 to 1-oxacepham derivative 12 [IR (CHCl<sub>3</sub>) 3430, 3350 (br), 1778, 1740, 1620 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  3.4-4.2 (4H, m, C<sub>2</sub>-H, C<sub>3</sub>-H, OH), 4.90 (2H, br d, J = 6 Hz, C<sub>4</sub>-H, C<sub>7</sub>-H), 5.30 (1H, s, C<sub>6</sub>-H), 6.88 (1H, s, CHPh<sub>2</sub>), 7.1-7.8 (16H, m, C<sub>6</sub>H<sub>5</sub>, NH)] and subsequent mesylation-elimination reaction with mesyl chloride and triethylamine giving 10 in 80% over-all yield. Stereochemical assignment of alcohol 12 is based upon the following NMR data of its acetate 13. As shown in Fig., H-2 $\alpha$  and H-2 $\beta$  signals appear as the AB part of an ABX-type system (at  $\delta$  3.86 and 3.70, respectively) in  $C_6D_6$ . Five percents of nuclear Overhauser effects (NOE) were observed between the H-2 $\alpha$  and H-6 $\alpha$  signals. The  ${}^3J_{2\alpha,3\beta}$ ,  ${}^3J_{2\beta,3\beta}$  and  ${}^3J_{3\beta,4\beta}$  values were 9.1, 4.8, and 6.9 Hz, respectively. These facts indicate a half chair conformation of the perhydrooxazine ring, 3 $\alpha$  configuration of 3-acetoxyl, and 4 $\alpha$  configuration of 4-benzhydryloxycarbonyl, respectively. Thus, diborane reduction occurred stereoselectively from the  $\beta$ -face of the 1-oxacephem molecule.

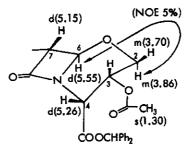
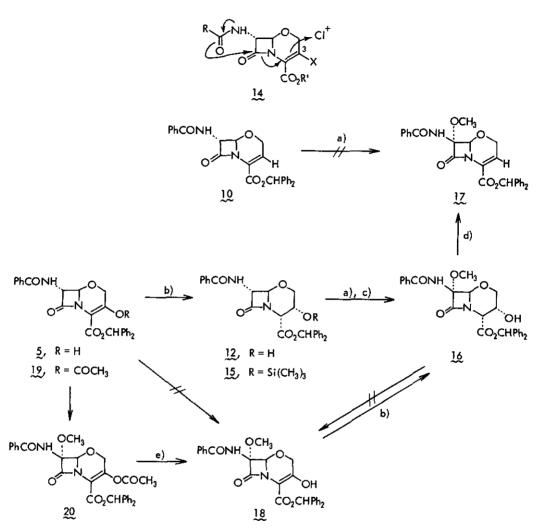
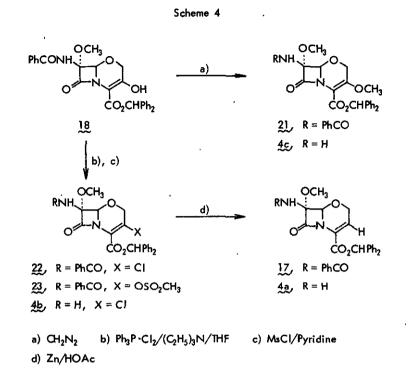




Fig. H<sup>1</sup>-Chemical shifts ( $\delta$ , ±0.01 ppm), coupling constants (J<sub>H,H</sub> ±0.1 Hz), and NOE values (±2%) of 1-oxacepham 13 in C<sub>6</sub>D<sub>6</sub>.

Deacylation of the 7 $\alpha$ -benzoylamino side chains in §, §, and 10 was effected by a conventional method using phosphorus pentachloride and pyridine followed by a sequential addition of methanol and water to give 7 $\alpha$ -amino-3'-nor-1-oxacephems 7 [IR (CHCl<sub>3</sub>) 3550, 3400, 1775, 1715, 1620 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  2.06 (2H, br s, NH<sub>2</sub>), 3.70 (3H, s, C<sub>3</sub>-OCH<sub>3</sub>), 3.97 (1H, br s, C<sub>7</sub>-H), 4.40 (2H, s, C<sub>2</sub>-H), 4.72 (1H, s, C<sub>6</sub>-H), 7.00 (1H, s, CHPh<sub>2</sub>), 7.2-7.7 (10H, m, C<sub>6</sub>H<sub>5</sub>)], 9 [NMR (CDCl<sub>3</sub>)  $\delta$  2.222 (2H, br s, NH<sub>2</sub>), 4.03 (1H, br s, C<sub>7</sub>-H), 4.32 (2H, s, C<sub>2</sub>-H), 4.73 (1H, s, C<sub>6</sub>-H), 6.97 (1H, s, CHPh<sub>2</sub>), 7.1-7.6 (10H, m, C<sub>6</sub>H<sub>5</sub>)], and 11 [IR (CHCl<sub>3</sub>) 3400, 3340, 1785, 1730, 1635 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  1.87 (2H, br s, NH<sub>2</sub>), 3.72 (1H, s, C<sub>7</sub>-H), 4.38 (2H, d, J = 3 Hz, C<sub>2</sub>-H), 4.65 (1H, s, C<sub>6</sub>-H), 6.35 (1H, t, J = 3 Hz, C<sub>3</sub>-H), 7.00 (1H, s, CHPh<sub>2</sub>), 7.1-7.7 (10H, m, C<sub>6</sub>H<sub>5</sub>)], respectively, each in high yield. These 7 $\alpha$ amino compounds were finally subjected to epimerization by our newly developed procedure<sup>9</sup> [borohydride reduction of 7-(2,2-dichlorovinylimino derivatives)] giving 7 $\beta$ -amino-3'-nor-1-oxacephem 3c [IR (Nujol) 3520, 3400, 1785, 1725, 1630 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  1.75 (2H, br s, NH<sub>2</sub>), 3.77 (3H, s, OCH<sub>3</sub>), 4.48 (1H, d, J = 4 Hz,  $C_7$ -H), 4.52 (2H, s,  $C_2$ -H), 4.98 (1H, d, J = 4 Hz,  $C_6$ -H), 6.98 (1H, s,  $CHPh_2$ ), 7.2-7.6 (10H, m,  $C_6H_5$ )], 3b [IR (Nujol) 3520, 1785, 1720, 1710 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  2.07 (2H, br s, NH<sub>2</sub>), 4.40 (2H, s,  $C_2$ -H), 4.45 (1H, d, J = 4 Hz,  $C_7$ -H), 4.98 (1H, d, J = 4 Hz,  $C_6$ -H), 6.97 (1H, s,  $CHPh_2$ ), 7.2-7.6 (10H, m,  $C_6H_5$ )] and 3a [IR (Nujol) 3530, 3400, 1785, 1725, 1640 cm<sup>-1</sup>] respectively, in acceptable yields.

In contrast with the synthesis of 7a-unsubstituted 3'-nor-1-oxacephems, the way to  $7\alpha$ -methoxylated 3'-nor-1-oxacephems was not plain, since, in general, 3'-nor-1-oxacephems are sensitive to attack by a cationic reagent such as Cl<sup>+</sup> undergoing severe decomposition as indicated in formula 14. Thus, attempted methoxylation of 3-unsubstituted 1-oxacephem 10 by a conventional method using t-butyl hypochlorite and lithium methoxide resulted in formation of a mixture of non- $\beta$ -lactams and no desired product <u>17</u> was obtained. Therefore, an indirect and lengthy way was necessary to prepare this compound;  $3\alpha$ -hydroxy-1-oxacépham 12 obtained by diborane reduction of S as described earlier, was first trimethylsilylated giving 15 [mp 157-158°. Anal. Calcd. C<sub>30</sub>H<sub>32</sub>O<sub>6</sub>N<sub>2</sub>Si: C, 66.15; H, 5.92; N, 5.14. Found: C, 66.16; H, 5.90; N, 5.10.  $[\alpha]_D^{23}$  +2.1 ± 0.4 (c = 1.016, CHCl<sub>2</sub>); IR (CHCl<sub>2</sub>) 3430, 1778, 1740, 1673 cm<sup>-1</sup>; NMR (CDCl<sub>2</sub>) δ 0.0 (9H, s, Si-CH<sub>3</sub>), 3.6-4.2 (3H, m, C<sub>2</sub>-H, C<sub>3</sub>-H), 4.80 (1H, d, J = 6 Hz, C<sub>3</sub>-H or C<sub>7</sub>-H), 4.91 (1H, d, J = 6 Hz,  $C_7$ -H or  $C_3$ -H), 5.30 (1H, s,  $C_6$ -H), 6.87 (1H, s, CHPh<sub>2</sub>), 6.9-7.8 (16H, m,  $C_{6}H_{5}$ , NH)] which was then subjected to the conventional  $7\alpha$ methoxylation followed by hydrolysis to afford the  $7\alpha$ -methoxy 1-oxacepham <u>16</u> [IR (CHCl<sub>2</sub>) 3430, 1781, 1740, 1683 cm<sup>-1</sup>; NMR (CDCl<sub>2</sub>) 6 3.47 (3H, s, C<sub>7</sub>-OCH<sub>2</sub>), 3.7-4.3 (4H, m, C<sub>2</sub>-H, C<sub>3</sub>-H, C<sub>3</sub>-OH), 4.97 (1H, d, J = 5 Hz, C<sub>4</sub>-H), 5.40 (1H, s, C<sub>6</sub>-H), 6.93 (1H, s, CHPh<sub>2</sub>), 7.1-7.9 (16H, m, C<sub>6</sub>H<sub>5</sub>, NH)] in 83% yield. This compound was now led to 3-unsubstituted  $7\alpha$ -methoxy-1-oxa-3-cephem 17 [IR (CHCl<sub>3</sub>) 3440, 1790, 1734, 1695 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>) δ 3.57 (3H, s, C<sub>7</sub>-OCH<sub>3</sub>), 4.41 (2H, d, J = 2 Hz,  $C_2$ -H), 5.13 (1H, s,  $C_6$ -H), 6.45 (1H, t, J = 2 Hz,  $C_3$ -H), 6.97 (1H, s, CHPh<sub>2</sub>), 7.1-8.0 (16H, m, C<sub>6</sub>H<sub>5</sub>, NH)] in 93% yield. Despite the success it appeared most desirable to have  $7\alpha$ -methoxy-3-hydroxy-1-oxacephem 18 as a common intermediate as can be easily understood from the above discussion about the synthesis of 7*α*-unsubstituted 3'-nor-1-oxacephems. Unfortunately direct methoxylation of 5 or oxidation of 16 did not give 18 at all and so some device was necessary. It was anticipated that acylation of the 3-hydroxy group in 5 would reduce the nucleophilic susceptibility of the  $\Delta^3$ -double bond to prevent






a) <u>t</u>-BuOCI/LiOCH<sub>3</sub> b)  $B_2H_6/THF$  c)  $H_3O^+$  d) MsCI/( $C_2H_5$ )<sub>3</sub>N e) Pyridine/ $H_2O$ 

the decomposition with the chlorinating agent as depicted in 14. Thus, 5 was first acetylated to enol acetate 19 [mp 135-137°. Anal. Calcd.  $C_{29}H_{24}O_7N_2$ : C, 67.96; H, 4.72; N, 5.47. Found: C, 67.66; H, 4.67; N, 5.39. [ $\alpha$ ]<sup>23</sup><sub>D</sub> +10.2 ± 0.5° (c = 1.037, CHCl<sub>3</sub>); IR (CHCl<sub>3</sub>) 3430, 3380, 1790, 1730, 1670 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  1.83 (3H, s, COCH<sub>3</sub>), 4.27 (2H, s, C<sub>2</sub>-H), 4.80 (1H, s, C<sub>6</sub>-H), 5.13 (1H, d, J = 8 Hz, C<sub>7</sub>-H), 6.87 (1H, s, CHPh<sub>2</sub>), 7.1-8.0 (16H, m, C<sub>6</sub>H<sub>5</sub>, NH)] which was now subjected to 7 $\alpha$ -methoxylation using <u>t</u>-butyl hypochlorite and lithium methoxide. As expected methoxylation of this compound was very successful, giving in 85% yield 7α-methoxy enol acetate 20 [IR (CHCl<sub>3</sub>) 3425, 1790, 1733, 1683 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  1.92 (3H, s, COCH<sub>3</sub>), 3.55 (3H, s, C<sub>7</sub>-OCH<sub>3</sub>), 4.33 (2H, s, C<sub>2</sub>-H), 5.28 (1H, s, C<sub>6</sub>-H), 6.95 (1H, s, CHPh<sub>2</sub>), 7.1-8.1 (16H, m, C<sub>6</sub>H<sub>5</sub>, NH)] which on treatment with wet pyridine was converted into the desired compound 18 [IR (CHCl<sub>3</sub>) 3430, 3325, 1785, 1735, 1680, 1625 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  3.58 (3H, s, C<sub>7</sub>-OCH<sub>3</sub>), 4.28 (2H, s, C<sub>2</sub>-H), 5.22 (1H, s, C<sub>6</sub>-H), 6.98 (1H, s, CHPh<sub>2</sub>), 7.1-8.1 (17H, m, C<sub>6</sub>H<sub>5</sub>, NH, C<sub>3</sub>-OH)] in almost quantitative yield. It may be noteworthy that this compound was reduced with diborane giving in good yield a 1-oxacepham compound which proved to be identical with 16 obtained from 5 via 12. This result indicates that diborane reduction occurred from the  $\beta$  face, irrespective of the substituent at C<sub>7</sub>.

With the common intermediate 18 in hand, synthesis of the representative  $7\alpha$ -methoxylated 3'-norcephems proceeded smoothly an analogous way to that of  $7\alpha$ -unsubstituted analogs. Compound 18 was converted on treatment with diazomethane into 3-methoxy-3'-nor-1-oxacephem 21 [IR (CHCl<sub>3</sub>) 3425, 1780, 1725, 1682, 1625 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>)  $\delta$  3.57 (3H, s, C<sub>7</sub>-OCH<sub>3</sub>), 3.61 (3H, s, C<sub>3</sub>-OCH<sub>3</sub>), 4.33 (2H, s, C<sub>2</sub>-H), 5.18 (1H, s, C<sub>6</sub>-H), 6.88 (1H, s, CHPh<sub>2</sub>), 7.2-8.1 (16H, m, C<sub>6</sub>H<sub>5</sub>, NH)], with triphenylphosphine-chlorine complex in the presence of triethylamine into 3-chloro-3'-nor-1-oxacephem 22 [IR (CHCl<sub>3</sub>) 3430, 1792, 1735, 1688 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>) & 3.55 (3H, s, C<sub>7</sub>-OCH<sub>3</sub>), 4.33 (2H, s, C<sub>2</sub>-H), 5.25 (1H, s, C<sub>6</sub>-H), 6.83 (1H, s,  $CHPh_2$ ), 7.2-8.1 (16H, m,  $C_6H_5$ , NH)], and with mesylchloride and pyridine into 3-mesyloxy-3'-nor-1-oxacephem 23 [NMR (CDCl<sub>3</sub>) δ 2.97 (3H, s, SO<sub>2</sub>CH<sub>3</sub>), 3.58 (3H, s, C<sub>7</sub>-OCH<sub>3</sub>), 4.52 (2H, s, C<sub>2</sub>-H), 5.22 (1H, s, C<sub>6</sub>-H), 6.90 (1H, s, NH), 6.97 (1H, s,  $CHPh_2$ ), 7.2-7.9 (15H, m,  $C_6H_5$ )] each in good yield. The latter two compounds, 22 and 23, were further reduced with zinc and acetic acid to give 3unsubstituted analog 17 smoothly. This transformation provided a better route to 17 in comparison with that described above. Finally the side chain cleavage by a modification of the phosphorus pentachloride method  $10^{10}$  converted 17, 22, and 21 smoothly into 3'-nor-methoxyamines 4g [IR (CHCl<sub>3</sub>) 3410, 3330, 1790, 1732  $cm^{-1}$ ; NMR (CDCl<sub>3</sub>) & 2.21 (2H, br s, NH<sub>2</sub>), 3.45 (3H, s, C<sub>7</sub>-OCH<sub>3</sub>), 4.40 (2H, d, J = 3 Hz,  $C_2$ -H), 4.75 (1H, s,  $C_6$ -H), 6.40 (1H, t, J = 3 Hz,  $C_3$ -H), 6.96 (1H, s, CHPh<sub>2</sub>), 7.2-7.7 (10H, m, C<sub>6</sub>H<sub>5</sub>)], <u>4b</u> [IR (CHCl<sub>3</sub>) 3420, 3340, 1790, 1732 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>) & 2.15 (2H, br s, NH<sub>2</sub>), 3.50 (3H, s, C<sub>7</sub>-OCH<sub>3</sub>), 4.40 (2H, s, C<sub>2</sub>-H),



4.91 (1H, s,  $C_6$ -H), 7.00 (1H, s, CHPh<sub>2</sub>), 7.2-7.7 (10H, m,  $C_6H_5$ )], and 4c [IR (CHCl<sub>3</sub>) 3410, 1785, 1723 cm<sup>-1</sup>; NMR (CDCl<sub>3</sub>) & 2.50 (2H, br s, NH<sub>2</sub>), 3.47 (3H, s,

Acknowledgement: The authors thank Dr. K. Tori and Mrs. Y. Takayama for their valuable discussion of the NMR data.

## References and Notes

- R. Scartazzini and H. Bickel, <u>Helv. Chim. Acta</u>, 1972, <u>55</u>, 423.
   <u>Heterocycles</u>, 1977, <u>7</u>, 1165.
- a) H. Peter and H. Bickel, <u>Helv. Chim. Acta</u>, 1974, <u>57</u>, 2044. b) R.
   Scartazzini and H. Bickel, <u>Helv. Chim. Acta</u>, 1974, <u>57</u>, 1919. c) R. R.
   Chauvette and P. A. Pennington, <u>J. Am. Chem. Soc</u>., 1974, <u>96</u>, 4986. d)
   R. Scartazzini, P. Schneider, and H. Bickel, <u>Helv. Chim. Acta</u>, 1975, <u>58</u>, 2437. e) S. Kukolja, N. R. Gleissner, A. I. Ellis, D. E. Dorman, and J.

W. Paschal, J. Org. Chem., 1976, 41, 2276. f) H. R. Pfaendler, P. A. Rossy, J. Gosteli, and R. B. Woodward, <u>Heterocycles</u>, 1976, 5, 293.

- 3. R. R. Chauvette and P. A. Pennington, J. Med. Chem., 1975, 18, 403.
- 4. I. Ueda, M. Kobayashi, and T. Kitaguchi, Japan Patent Kokai, 80-115886.
- Y. Hamashima, S. Yamamoto, T. Kubota, K. Tokura, K. Ishikura, K. Minami,
   F. Matsubara, M. Yamaguchi, I. Kikkawa, and W. Nagata, <u>Tetrahedron Lett</u>., 1979, 4947.
- D. Hagiwara, H. Takeno, M. Aratani, K. Hemmi, and M. Hashimoto, <u>J. Med</u>. <u>Chem.</u>, 1980, <u>23</u>, 1108.
- 7. M. Yoshioka, T. Tsuji, S. Uyeo, S. Yamamoto, T. Aoki, Y. Nishitani, S. Mori,
  H. Satoh, Y. Hamada, H. Ishitobi, and W. Nagata, <u>Tetrahedron Lett</u>., 1980,
  21, 351.
- W. Nagata, M. Narisada, Y. Hamashima, K. Okada, Japanese Published Patent Application 59186/1977; <u>Chem. Abst.</u>, 1977, <u>87</u>, 135362.
- 9. T. Aoki, N. Haga, Y. Sendo, T. Konoike, S. Kamata, M. Yoshioka, and W. Nagata, to be published soon.
- S. Uyeo, I. Kikkawa, Y. Hamashima, H. Ona, Y. Nishitani, K. Okada, T. Kubota, K. Ishikura, Y. Ide, K. Nakano, and W. Nagata, <u>J. Am. Chem. Soc.</u>, 1979, <u>101</u>, 4403.

Received, 12th October, 1981