CHEMILUMINESCENCE OF 10-METHYLACRIDINIUM METHOSULFATE Nobutaka Suzuki,* Yoshibiko Kazui, Masahiro Kato, and Yasuji Izawa Department of Industrial Chemistry, Faculty of Engineering, Mie University, Tsu, Mie 514, Japan A bright blue chemiluminescence (CL) of a new chemiluminescent system, 10-methylacridinium methosulfate (1a) owing to the fluorescence of 10-methylacridone (2) excited to the S_1 state, is described, when oxidized with ground state oxygen in the presence of t-BuOK in dimethyl sulfoxide (DMSO) (scheme 1). Addition of excess KCN solution in DMSO/ H_2O (9:1) to the solution of 1a instead of addition of t-BuOK, as similarly as described in the literature of Happ et al on the weak CL of 10-methylacridinium chloride (1b), resulted in a depressed amount of CL (less than 1/10 of that by t-BuOK). After neutralization of the resulted CL mixture with dry ice, solvents were evaporated in vacuo and the residue was extracted with ether, from which the final product 2 was characterized by IR, NMR, and mp and determined on GLC and TLC comparing with the authentic sample. The results are shown in Table 1. CL spectra of 1 showed the same value of $\lambda_{\rm max}$ of fluorescence (FL) spectrum of 2 (420 and 435 nm) under the similar basic conditions (t-BuOK/DMSO/O₂ or KCN/DMSO-H₂O/O₂). These results suggest that the emitter in the CL reactions is the ketone (2) generated quantitatively. When treated with the base in the vacuum first (freeze-thaw cycle: 10^{-4} mmHg x 3 times), and then treated by oxygen, la also gave CL. The free base of 1, acridine (3) itself, also gave weak CL under the similar conditions to yield 9-acridone. Table 1. Chemiluminescence of the Acridinium Compounds 1. | | [1] (mmo1/1) | [t-BuOK]
(mmo1/1) | | Yield of 2 (%) | $\Phi_{\rm CL}$ (einstein/mol x 10 3) a) | |----|--------------|----------------------|----|----------------|--| | la | 1.01
1.01 | 10 | 10 | 97%
99 | 0.69
0.20 | | ÌЬ | 1.00
1.00 | 10 | 10 | 93
39 | 0.56
0.063 | | 3 | 1.00
1.00 | 10
— | 10 | = | 0.015 | a) Relative to luminol in aqueous solution. From the considerations as above and on the other acridinium CL systems and the degradation energies, a reaction mechanism is proposed for the present CL reaction.