SYNTHESIS OF ISOQUINOLINEQUINONE ANTIBIOTICS

Akınori Kubo, Yoshiyasu Kitahara, Shinsuke Nakahara, Naoki Saito, and Ryoichi Iwata

Meiji College of Pharmacy, 1-35-23 Nozawa, Setagaya-ku, Tokyo, 154, Japan

We have recently elucidated the structure of the satellite antibiotics, saframycins, mimosamycin, and mimocin($\underline{1}$), possessing unusual isoquinolinequinone nucleus. Furthermore, an isoquinolinequinone metabolite, renierone(2), was isolated from a marine sponge.

Mimocin($\underline{1}$), 1-pyruvoylaminomethyl-6-methyl-7-methoxyisoquinoline-5,8-dione, was synthesized. Catalytic hydrogenation of $\underline{3}$ over 10% Pd-C in methanol containing hydrogen chloride afforded the sensitive $\underline{4}$. Treatment of dihydrochloride salt of 4 with pyruvic acid in α,α -dichloromethyl methyl ether afforded the desired $\underline{1}$. The compound $\underline{1}$ was also obtained by oxidation of 1-pyruvoylaminomethyl-6-methyl-5,7,8-trimethoxyisoquinoline(6) with ceric ammonium nitrate (CAN).

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{COO} \\ \text{R} \\ \text{CH}_{3} \\ \text{COO} \\ \text{R} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{O} \\ \text{O} \\ \text{CH}_{2} \\ \text{NH-} \\ \text{C} \\ \text{C$$

Renierone $(\underline{2})$, 1-(7-methoxy-6-methyl-5,8-dioxoisoquinolyl)carbinyl angelate was synthesized from 7-methoxy-6-methyl-8-nitroisoquinoline $(\underline{7})$, which was converted to the Reissert compound $(\underline{8})$. The lithium salt of $\underline{8}$ was treated with gaseous formaldehyde to yield $\underline{9}$. The Fremy's salt oxidation of $\underline{10}$ obtained by hydrolysis and catalytic reduction of $\underline{9}$ provided $\underline{11}$. The compound $\underline{11}$ was treated with phenyllithium in dioxane-ether at -20° followed by addition of angeloyl chloride to afford $\underline{2}$.

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{O} \\ \text{NO}_{2} \\ \text{CN} \\ \text{NO}_{2} \\ \text{CN} \\ \text{CN} \\ \text{COC}_{6} \\ \text{H}_{5} \\ \text{CH}_{3} \\ \text{O} \\ \text{R}_{1} \\ \text{CH}_{2} \\ \text{OR}_{2} \\ \text{CH}_{3} \\ \text{O} \\ \text{CH}_{3} \\ \text{O} \\ \text{CH}_{2} \\ \text{OH}_{3} \\ \text{O} \\ \text{CH}_{2} \\ \text{OH}_{3} \\ \text{CH}_{3} \\ \text$$