INTRODUCTION OF CARBON SUBSTITUENTS TO HETEROCYCLES VIA HETEROAROMATIC CATIONS: ON PYRIDINE AND ISOQUINOLINE

Kin-ya Akiba, Hideto Matsuoka, Yūji Iseki, Keiichi Araki, Masayuki Nakatani and Makoto Wada

Department of Chemistry, Faculty of Science, Hiroshima University

Higashisenda-machi, Hiroshima 730, Japan

Diisopropyl-1-ethoxycarbonyl-1, 4-dihydropyridine-4-phosphonate ($\underline{2}$) was prepared regioselectively in 73% yield from the reaction of pyridinium salt ($\underline{1}$) and triisopropyl phosphite. Regiospecific synthesis of 4-substituted pyridines was attained via alkylation of $\underline{2}$ (\sim 80%) followed by treatment with butyllithium or sodium iodide ($50\sim80\%$).

this butyllithium or sodium iodide (
$$50 \sim 80\%$$
).

$$\begin{array}{c}
0 \\
+ \text{ cl} - \text{ cl} \\
0 = \text{ c} - 0 \text{ Et}
\end{array}$$

$$\begin{array}{c}
0 \\
+ \text{ cl} \\
0 = \text{ c} - 0 \text{ Et}
\end{array}$$

$$\begin{array}{c}
0 \\
+ \text{ cl} \\
0 = \text{ c} - 0 \text{ Et}
\end{array}$$

$$\begin{array}{c}
0 \\
+ \text{ cl} \\
0 = \text{ c} - 0 \text{ Et}
\end{array}$$

$$\begin{array}{c}
0 \\
+ \text{ cl} \\
0 = \text{ c} - 0 \text{ Et}
\end{array}$$

$$\begin{array}{c}
0 \\
+ \text{ cl} \\
0 = \text{ c} - 0 \text{ Et}
\end{array}$$

$$\begin{array}{c}
0 \\
+ \text{ cl} \\
0 = \text{ c} - 0 \text{ Et}
\end{array}$$

$$\begin{array}{c}
0 \\
+ \text{ cl} \\
0 = \text{ c} - 0 \text{ Et}
\end{array}$$

$$\begin{array}{c}
0 \\
0 = \text{ c} - 0 \text{ Et}
\end{array}$$

$$\begin{array}{c}
0 \\
0 = \text{ c} - 0 \text{ Et}
\end{array}$$

Pyridinium salt ($\frac{1}{2}$) was attacked regioselectively at 4-position by RCu·BF $_3$ to give 4-alkyl-1-ethoxycarbonyl-1, 4-dihydropyridines ($\frac{3}{2}$: 80~90%), which were readily oxidized with oxygen to afford the corresponding 4-alkylpyridines ($\frac{4}{2}$: ~60%).

Isoquinolinium salt ($\frac{5}{5}$) was reacted with boron enolates to give 1- β -keto substituted 2-ethoxy-carbonyl-1, 2-dihydroisoquinolines ($\frac{6}{5}$: \sim 70%), which were cyclized with sodium ethoxide to afford $\frac{7}{5}$ ($\frac{56}{5}$).