SYNTHESIS OF HETEROCYCLIC NATURAL PRODUCTS THROUGH ORGANOSELENIUM INTERMEDIATES

Tetsuji Kametani Hoshi College of Pharmacy, Ebara 2-4-41, Shinagawa-ku, Tokyo 142, Japan Hideo Nemoto, Hiroshi Kurobe, Koji Suzuki, and Keiichiro Fukumoto Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

 β -Hydroxy phenylselenide $(\frac{1}{2})$ was subjected to the cyclisation reaction in acidic media to give $(\frac{2}{2})$ which was further converted into safranal $(\frac{3}{2})$. From the same type of reaction of $(\frac{4}{2})$, p-menthans $(\frac{5}{2})$ and $(\frac{6}{2})$ were also obtained. This new cyclisation reaction was applied to the synthesis of davanone and caparrapi oxide derivatives. Thus β -hydroxy phenylselenide $(\frac{7}{2})$ prepared starting from nerolidol was subjected to the cyclisation reaction to afford $(\frac{8}{2})$ and $(\frac{9}{2})$. Oxidative elimination of phenylselenyl group of $(\frac{8}{2})$ gave $(\frac{10}{2})$ and $(\frac{11}{2})$. On the other hand, reductive elimination of phenylselenyl group of $(\frac{9}{2})$ afforded caparrapi oxide $(\frac{12}{2})$ and its C₈-epimer $(\frac{13}{2})$.

