1,2-ISOPROPYLIDENE D-GLYCERALDEHYDE AS A CHIRAL SYNTHON FOR Y-BUTYROLACTONE

Tetsuji Kametani*

Hoshi College of Pharamcy, Ebara 2-4-41, Shinagawa-ku, Tokyo 142, Japan Toshio Suzuki, Masahiro Nishimura, Etsuko Sato and Katsuo Unno Department of Pharmacy, Akita University Hospital, Hondo, Akita 010, Japan

<u>Abstract</u>.....1,2-Isopropylidene D-glyceraldehyde (3) is shown to be a useful and inexpensive chiral starting material for a synthesis of Y-butyrolactones (8), (10) and (12) which are potential intermediates for secologanin and sesquiterpene lactones.

In a recent develpment on the total synthesis of optically active natural products, 1,2-isopropylidene \underline{D} -glyceraldehyde (1)¹ has been used as a chiral synthon for a number of biological active compounds such as prostaglandins², brefeldin A³, ipsdienol⁴, prestalotin⁵ and leukotriene A₄⁶. We have shown, in a previous paper⁷, 3(S)-[3-hydroxy-1(E)-propylenyl]cyclopentanone (2) derived from 1 was a potential intermediate leading to antirhine and brefeldin A.

In our continuous efforts on the synthesis of natural products, secologanin and sesquiterpene lactones, we required a synthesis of the γ -butyrolactone possessing an appropriate substituent at C_3 and C_4 . Here we wish to report our successful results.

The aldehyde (3)¹ was treated with methoxycarbonylmethylenetriphenylphosphorane to give 4a, $[\alpha]_{D}$ + 37.7°(c = 0.29, CHCl₃)⁸ and 4b, $[\alpha]_{D}$ + 101.4° (c = 0.29, CHCl₃) as a mixture (55 : 45) in 64.1 % yield. Diisobutylaluminum hydride reduction of 4a followed by ortho-ester Claisen rearrangement⁹ of the resultant allyl alcohol (5a), $[\alpha]_{D}$ + 26.7°(c = 0.21, CHCl₃) provided a separable mixture of (6), $[\alpha]_{D}$ + 24.0° (c = 0.20, CHCl₃) and (7), $[\alpha]_{D}$ + 12.7° (c = 0.22, CHCl₃) from (E)-olefinic ester (4a) in 22.4 and 10.4 % overall yield, respectively. Similarly, (Z)-olefinic ester (4b) was converted to (6) and (7) in 28.2 and 10.5 % yield, respectively.

Since 3(S) and 3(R)-methyl esters (6) and (7) are in our hand, lactonization was examined under several conditions and the results were summarized in the following Table.

Reaction conditions Products					Viald (8)
Solvent	Acid	Temp	Time	<u>γ-Lactone (8) : δ-Lactone (9)</u>	field (8)
МеОн	30 % н ₂ so ₄	60	30 min	only <u>y</u> -lactone	58.7
MeOH	10 % H ₂ SO ₄	r.t.	2 h	77 : 23	81.3
MeOH	10 % H ₂ SO ₄	0°	3 h	57 : 43	60.1
MeOH	P-TsOH	r.t.	2 h	83 : 17	80.0
MeOH	P-TsOH	0°	2 h	84 : 16	48.3
THF	10 % H ₂ SO ₄	r.t.	2 h	89 : 11	35,3
THF	10 % H ₂ SO ₄	0	2 h	55 : 45	20.7

As can be seen in Table, a treatment of 6 under relatively mild conditions produced always a mixture of Y and &-butyrolactone (8 and 9), whereas a treatment of 6 under a restricted condition (30 % H₂SO₄, MeOH, 60°, 30 min) afforded exclusively γ butyrolactone (8) in 58.7 % yield, Under this condition, none of the &-lactone (9) could be detected. Interestingly, trans- γ -butyrolactone (10), $[\alpha]_D + 81.6^{\circ}$ (c = 0.13, CHCl₃) was easily obtained from 7 (10 % H₂SO₄, MeOH, r.t., 3 hr) in 88.4 % yield. Protection of the primary alcohol of 8 as tert-butyldimethylsilyl ether¹⁰ (93.4 %) and subsequent cleavage of the double bond¹¹ of 11, $[\alpha]_D + 13.9^{\circ}$ (c = 0.23, CHCl₃), provided the aldehyde (12) as a diastereoisomeric mixture at C-3 position (approximately 1 : 1). This labile aldehydes were protected as acetal without purification to give a mixture of syn and anti-type γ butyrolactones (13) and (14) (approximately 1 : 1), $[\alpha]_D + 21.4^{\circ}$ (c= 0.28, CHCl₃), in 40.8 % overall yield from 11. Similarly, anti-type γ butyrolactone (10) was also converted to 14, $[\alpha]_D + 18.2^{\circ}$ (c=0.11, CHCl₃), in 40 % overall yield. Thus, we have achieved the enantioselective synthesis of γ butyrolactone derivatives in both of syn and anti forms which can be potential intermediates leading to a variety of natural products having α methylene- γ -butyrolactone moiety. Furthermore, our supposed synthetic route was applied to (S)glyceraldehyde¹², a useful intermediate leading to eudesmane sesquiterpene lactones and avenaciolide

could also be obtained. According to this stragegy, enantioselective syntheses of secologanin sesquiterpene lactones are under investigation.

REFERENCES and NOTES

- H. Fischer and E. Baer, <u>Helv. Chim. Acta</u>, 1934, 17, 622; E. Baer and H. Fischer, <u>J. Biol. Chem.</u>, 1939, 128, 463.
- 2 G. Stork and T. Takahashi, J. Amer. Chem. Soc., 1977, 99, 1275.
- 3 T. Kitahara, K. Mori and M. Matsui, Tetrahedron Lett., 1979, 3021.
- 4 K. Mori, T. Takigawa, and T. Matsuo, Tetrahedron, 1979, 35, 933.
- 5 K. Mori, M. Oda, and M. Matsui, Tetrahedron Lett., 1976, 3173.
- 6 J. Rokach, R. N. Young, and M. Kakushima, Tetrahedron Lett., 1981, 22, 979.
- 7 T. Kametani, T. Suzuki, E. Sato, M. Nishimura, and K. Unno, J. Chem. Soc. Chem. Commun., in press.
- 8 Optical rotation was-measured with a JASCO-DIP-4 automatic polarimeter.
- W. S. Johnson, L. Werthemann, W. R. Bartlett, T. J. Brocksom, T. Li, D. J. Faulkner, and
 M. R. Pertersen, <u>J. Amer. Chem. Soc.</u>, 1970, 92, 741; G. Stork and S. Raucher, <u>J. Amer. Chem.</u>
 <u>Soc.</u>, 1976, 98, 1583; G. Stork, T. Takahashi, I. Kawamoto, and T. Suzuki, <u>J. Amer. Chem. Soc.</u>,

1978, 100, 8272. For a review, see F. E. Ziegler, Acc. Chem. Res., 1977, 10, 227.

- 10 E. J. Corey and A. Verkateswarlu, J. Amer. Chem. Soc., 1972, 94, 6190.
- R. Pappo, D. S. Allen, Jr., R. V. Lemieux, and W. S. Johnson, <u>J. Org. Chem.</u>, 1956, 21, 478;
 S. H. Graham and A. J. S. Williams, <u>J. Chem. Soc. (C)</u>, 1966, 655.
- 12 S. B. Baker, <u>J. Amer. Chem. Soc.</u>, 1952, 74, 82; M. E. Jung and T. J. Shaw, <u>J. Amer. Chem.</u> <u>Soc.</u>, 1980, <u>102</u>, 6304.

Received, 18th September, 1981