ON THE REACTION OF INDOLE WITH SODIUM BOROHYDRIDE IN FORMIC ACID

Gordon W. Gribble* and Stephen W. Wright Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755 USA

<u>Abstract</u> - The reaction of indole (<u>1</u>) with sodium borohydride in formic acid yields <u>N</u>-methylindoline (<u>3</u>) and a product derived from "indole dimer", $3-(2-(2-\underline{N},\underline{N}-dimethylaminophenyl)ethyl)-l$ methylindoline (<u>4</u>), whose structure is proved by independentsynthesis.

Several years ago we reported² the novel reaction of indole (<u>1</u>) with sodium borohydride (NaBH₄) in neat carboxylic acids. This reagent combination effects reduction of the indole double bond and <u>N</u>-alkylation, affording an excellent one-flask synthesis of <u>N</u>-alkylindolines (2).

But in contrast to the other carboxylic acids studied,² formic acid, in addition to its more vigorous reaction with $NaBH_4$, gave somewhat erratic results and invariably produced another product, in addition to the expected <u>N</u>-methylindoline (3). In this paper we describe the structure of thisby-product.

Thus, treating a solution of $\underline{1}$ (8.5 mmol) in 97% formic acid (45 ml, redistilled) under nitrogen at 0-5° with NaBH₄ pellets (75 mmol) (Ventron), followed by a standard work-up³, gives a mixture consisting of two major products by thin layer chromatography. Column chromatography (basic alumina, hexane elution) gives $\underline{3}$ in 16% yield, identical (TLC, IR, ¹H-NMR, UV) to a sample prepared⁴ from <u>N</u>-methylindole, and $\underline{4}$ (oil; crystallizes in freezer) in 32% yield, having the molecular formula C₁₉H₂₄N₂ by mass spectrometry (m/e = 280.1923; calcd m/e = 280.1939).

The UV spectrum (95% EtOH) of <u>4</u> (217, 252, 296 nm) is very similar to that of <u>3</u> (212, 253, 300 nm) and the IR spectrum (CHCl₃) of <u>4</u> is similar to that of <u>3</u>, showing strong bands at 2960-2810 (C-H stretch), 1610, 1490, and 1450 (phenyl C=C stretch) cm⁻¹, but no N-H absorption. The ¹H-NMR spectrum of <u>4</u> reveals singletsat & 2.65 (6H; <u>N</u>-Me) and 2.70 ppm (3H; <u>N</u>-Me) and multiplets between 2.3-3.5 (7H) and 6.4-7.4 ppm (8H).

Further structural information on <u>4</u> was obtained by treating it with activated manganese dioxide, a reagent known to oxidize indolines to indoles⁵. This gives <u>5</u> (oil; 87% yield) which displays 1,3-dialkylindole UV absorption (226, 289 nm) and a mass spectrum consistent with $C_{19}H_{22}N_2$ (m/e 278 (21%), 144 (100%), 134 (9%)). The ¹H-NMR spectrum of <u>5</u> shows singlets at δ 2.60 (6H; <u>N</u>-Me), 3.00 (4H; CH₂CH₂), and 3.55 ppm (3H; <u>N</u>-Me), and multiplets at 6.8-7.3 (8H) and 7.5 ppm (1H; indole H-4).

All of these data and mechanistic considerations (vide infra) suggest 3-(2-(2-N,N-dimethylaminophenyl)ethyl)-1-methylindoline as the structure of 4 and <math>3-(2-(2-N,N-dimethylaminophenyl)ethyl)-1-methylindole as the structure of 5.

The two very conspicuous peaks in the mass spectrum of 5, m/e 144 (100%) and 134 (9%), can be ascribed to fragment ions 6 and 7, respectively.

To confirm $\underline{4}$ as the structure of this by-product, we independently synthesized this compound as shown in Scheme I. Dimerization of 1 to the well-known "indole

dimer" hydrochloride⁶ (<u>8</u>) (88% yield) was followed by conversion to methiodide <u>9</u> using a procedure modified from that reported.⁷ Thus, slowly adding a benzene solution of the free base of <u>8</u> to a refluxing benzene solution of excess methyl iodide in the presence of potassium carbonate gave <u>9</u>. This crude material was subjected to a Hofmann degradation as previously described⁷ and the resulting 3vinylindole (<u>10</u>) was hydrogenated⁸ to <u>11</u> (35% yield from <u>8</u>). Selective indole <u>N</u>methylation of <u>11</u> was readily accomplished⁹ to give an oily product (50% distilled yield; bp 165°/0.075 torr) that was identical (TLC, IR, ¹H-NMR, UV) to <u>5</u>, as prepared above from <u>4</u>. Reduction⁴ of this material gave a product (93% yield) which was identical (TLC, IR, ¹H-NMR, UV) to <u>4</u>, as obtained from <u>1</u>. Thus, the structure of 4 is secured as proposed.

A plausible pathway for the formation of $\underline{4}$ is depicted in Scheme II. Formation of the indole dimer <u>6</u> (as its formate salt) is followed by an acid-induced gramine-type cleavage¹⁰ to give 3-alkylideneindolenine (<u>12</u>), which is reduced to indole (<u>13</u>) by a presumed¹¹ formoxyborohydride species. Intermediate <u>12</u> has been implicated in the formation of an indole trimer from indole (<u>1</u>) and indole dimer <u>6</u>.¹² Subsequent protonation of the indole double bond in <u>13</u> and reduction of the protonated indolenine (<u>14</u>) lead to indoline (<u>15</u>). Finally, triple <u>N</u>-methylation³ by the presumed formoxyborohydride reagent would give the <u>bis</u>-tertiary amine(<u>4</u>).

Further studies are needed to understand the difference between formic acid and the other carboxylic acids in their reactions with NaBH4.

Acknowledgments

This investigation was supported in part by Merck Sharp and Dohme Research Laboratories, Eli Lilly Research Laboratories, and PHS Grant Number CA-24422, awarded by the National Cancer Institute, DHHS. We also thank Mr. Robert C. Wade of Ventron Corporation (Danvers, Massachusetts) for a supply of sodium borohydride.

References and Notes

- This paper is Part XI in the series "Reactions of Sodium Borohydride in Acidic Media." For Part X, see G. W. Gribble, J. L. Johnson, and M. G. Saulnier, <u>Heterocycles</u>, in press.
- 2. G. W. Gribble, et al., <u>J. Am. Chem. Soc.</u>, 1974, 96, 7812.
- 3. G. W. Gribble, J. M. Jasinski, and J. T. Pellicone, Synthesis, 1978, 766.
- 4. G. W. Gribble and J. H. Hoffman, Synthesis, 1977, 859.
- 5. E. F. Pratt and T. P. McGovern, J. Org. Chem., 1964, 29, 1540.
- 6. O. Schmitz-Dumont, K. Hamann, and K. H. Geller, Ann., 1933, 504, 1.
- 7. H. F. Hodson and G. F. Smith, J. Chem. Soc., 1957, 3544.

- For the catalytic hydrogenation of 3-vinylindoles, see L. J. Dolby and G. W. Gribble, <u>Tetrahedron</u>, 1968, 24, 6377.
- 9. H. Heaney and S. V. Ley, J. Chem. Soc. Perkin Trans. 1, 1973, 499.
- R. J. Sundberg, "The Chemistry of Indoles," Academic Press, New York, N.Y., 1970, pp. 93-114.
- 11. For a review, see G. W. Gribble, Eastman Org. Chem. Bull., 1979, 51, 1.
- 12. G. F. Smith, Chem. & Ind., 1954, 1451.

Received, 3rd October, 1981