THE FACILE ADDITION OF SECONDARY AMINES TO WITHAFERIN A. A FURTHER EXAMPLE OF ALUMINA-CATALYZED ADDITION OF AMINES TO α , β -unsaturated ketones

S. William Pelletier*, Gulilat Gebeyehu and Naresh V. Mody Institute for Natural Products Research and The Department of Chemistry, The University of Georgia, Athens, Georgia 30602, USA

Abstract—The alumina-catalyzed addition of various secondary amines to withaferin A (1) is facile and efficient. The addition is illustrated by the preparation in excellent yield of 3-aziridinyl-2,3-dihydrowithaferin A (2), a compound with significant in vivo antitumor activity.

The introduction of an amine functionality in the steroid nucleus is known to alter biological activity significantly. Synthetic and naturally-occurring 3-aminosteroids are known to possess important biological activities, such as CNS, anaesthetic and neuromuscular blocking. For a study of the relationship of structure with antitumor activity, we required a simple and efficient method of introducing an amine functionality at the C(3) position of withaferin A (1). As earlier investigators observed 3,5 that alcohols add to the enone moiety of withaferin A with ease (especially in the presence of a base such as DBU), we anticipated that amines, and in particular secondary amines, would add in a similar fashion to give the required amino adduct. However, treatment of withaferin A (1) with aziridine or diethylamine resulted in the formation of a complex mixture of products, and the reaction did not proceed to completion within two days. Hence we took advantage of our recent discovery of the use of alumina as a catalyst for the addition of secondary amines to exocyclic α,β -unsaturated ketones. 6

In this paper we describe an alumina-catalyzed addition of secondary amines to the enone moiety of withaferin A, a reaction which is facile and efficient. The results of addition of nine secondary amines to withaferin A are presented in Table I.

Table I: Addition of Secondary Amines to Withaferin A

Compound	R	Reaction Time	%Yieldt
2	ĎV− ELĘH3	1 hr	85
3	ÇH3 N-	24 hr	65
4	N	1 hr	70
5	N-	24 hr	68
6	(c N -	5 hr	67
7	O N-	3 hr	86 ‡
8	^b CH₃— ^α N— CH₅—	24 hr	62*
9		4 8 hr	57*
10	d cHsh-	. 24 hr	67*

tYield is after flash chromatography. 7 All compounds were fully characterized by mass, proton & carbon-13 NMR spectra. † The material was triturated with CHCl₃/hexane before chromatography.

The structures of addition products were determined by 1 H and 13 C NMR spectral analysis. The values and assignments of the chemical signals of the 1 H and 13 C NMR spectra of the products are given in Tables II and III. The 13 C chemical shifts assignments were based on previous studies reported from our laboratory³ and others.⁸

The following is a representative experimental procedure: 500 mg of withaferin A (1) was treated with 5 ml of aziridine and 500 mg of Al₂O₃ (activity-III) 10 in 120 ml of toluene at 25°C. The reaction mixture was stirred under nitrogen until the starting material was consumed (TLC, 1 hr). The solid that was obtained after filtration and evaporation was subjected to flash chromatography⁷ [SiO₂, 40-63 µm; 3% EtOH in EtOAc] to give 463 mg of 3-aziridinyl-2,3-dihydrowithaferin A (2). Crystallization from EtOAc/hexane gave compound 2 as white cubes, mp 205.5 -207.5°C (corr.).

^{*}Yield is based on recovered withaferin A (54, 70, and 85% conversion for compounds 8, 9, and 10, respectively)

Table II. 13C Chemical Shifts and Assignments of Compounds 2-10[†]

		Table II.	13C Chemical	Shifts and	d Assignment	s of Compo	unds 2-10'		
	2	3	4	5	6	7	8	9	10
C(1)	210.6	211.5	211.5	211.3	211.3	211.1	211.1	210.3	211.0
C(2)	39.8	36.2	38.7	36.4	37.2	36.5	37.3	36.6	37.9
C(3)	68.9	65.7	64.5	63.9	64.4	63.9	59.6	55.8	63.2
C(4)	77.1	78.0	75.8	73.3	73.2	74.0	73.8	74.3	74.0
C(5)	65.6	65.7	65.8	64.6	63.7	65.2	64.6	64.7	65.0
C(6)	61.1	60.2	61.4	59.9	59.3	61.0	60.0	59.7	60.0
C(7)	29.8	29.6	29.8	29.9	29.9	29.9	29.8	29.8	29.8
C(8)	31.1	31.1	31.2	31.1	31.2	31.4	31.2	31.3	31.3
C(9)	42.7	42.9	43.2	42.8	42.8	43.2	43.3	43.0	42.9
C(10)	50.5	50.4	50.2	49.9	49.9	50.4	49.8	50.1	50.0
C(11)	21.7	21.5	22.0	21.5	21.5	22.0	21.2	21.3	21.5
C(12)	27.3	27.2	27.2	27.3	27.3	27.3	27.2	27.2	27.2
C(13)	42.7	42.6	42.6	42.8	42.7	42.8	42.7	42.7	42.7
C(14)	56.0	56.1	55.9	56.1	56.1	56.2	56.0	56.1	56.1
C(15)	24.3	24.3	24.3	24.3	24.3	24.4	24.2	24.2	24.2
C(16)	39.2	39.2	39.3	39.2	39.2	39.3	39.1	39.1	39.1
C(17)	52.0	51.9	52.0	52.0	52.0	52.1	51.9	51.9	52.0
C(18)	11.6	11.6	11.6	11.7	11.6	11.8	11.6	11.6	11.6
C(19)	15.9	15.5	16.3	15.7	15.8	16.2	15.4	15.5	15.7
C(20)	38.8	38.8	38.7	38.9	38.8	38.9	38.8	38.8	38.8
C(21)	13.4	13.3	13.3	13.4	13.4	13.4	13.3	13.4	13.3
C(22)	78.7	78.7	78.7	78.7	78.7	78.7	78.6	78.7	78.4
C(23)	29.4	29.6	29.3	29.0	29.4	29.2	28.9	28.9	29.0
C(24)	153.1	153.3	153.3	152.9	152.9	152.9	153.2	152.9	153.2
C(25)	125.7	125.7	125.7	125.8	125.8	125.9	125.7	125.7	125.7
C(26)	167.0	167.0	166.9	167.0	167.0	167.0	166.9	166.9	167.0
C(27)	57.3	57.1	57.1	57.4	57.4	57.4	57.1	57.3	57.2
C(28)	20.1	20.0	20.0	20.0	20.0	20.0	20.0	19.9	20.0
a	26.8	65.8	51.6	50.5	51.1	50.2	42.7	48.0	37.0
b	26.4	40.9	23.3	24.5	28.9	67.2	13.1	28.3	58.4
С	-	16.9	-	26.3	26.7	-	-	129.8	138.7
d	-	-	-	-	-	-	-	124.6	127.1
е	-	-	-	-	-	-	-	118.3	128.5
f	-	-	-	÷	-	-	-	127.4	128.6
g	-	-	-	-	-	-	-	107.3	-
h	-	-		_	•	-	_	150.2	-

[†] Chemical shifts are recorded in ppm downfield from TMS. The spectra were taken in CDCl₃ solution 15.03 MHz in the Fourier mode using a JEOL FX-60 spectrometer in conjunction with a JEC-980 computer.

	2	8	4	5	9	7	80	6	10
C(3)-H	2.75(m)	2.80-3.06(m)	2.87-3.05(m)	2.87(m)	2.35-2.73(m)	2.87(m)	3.10(m)	3.30(m)	2.60-2.85(m)
C(4)-H	3.41(bs)	3.33(bs)	3.52(d,	3.51(d,	3.10-3.50(m)	3.65(m)	3.45(d,	3.56(d,	3.5(bs)
: 7		•	J=4Hz)	J=5Hz)			J=5Hz)	J=5Hz)	
H-(9)3	3.28(bs)	3.20(s)	3.20(s)	3.25(s)	Ф	3.25(s)	3.25(s)	3.26(s)	3.20(s)
C(18)-H ₂	0.69(s)	0.68(s)	0.69(s)	0.67(s)	0.66(s)	0.69(s)	0.68(s)	0.67(s)	0.68(s)
C(19)-H ₂	1.30(s)	1.25(s)	1.34(s)	1.28(s)	1.28(s)	1.35(s)	1.25(s)	1.33(s)	1.33(s)
C(21)-H ₃	0.98(d,	0.98(4,	0.97(d,	0.98(d,	0.96(d,	0.98(d,	U	0.96(d,	0.97(d,
,	J=6Hz	J=6Hz	J=6Hz	J=6Hz	J=6Hz	J=6H2)		J=6Hz)	J=6Hz
C(22)-H	4.48(m)	4.45(m)	4.45(m)	4.45(m)	4.40(m)	4.51(m)	4.42(m)	4.66(m)	4.40(m)
C(27)-H2	4.38(s)	4.38(s)	4.30(s)	4.30(s)	4.30(s)	4.38(s)	4.30(s)	4.33(s)	4.25(s)
C(28)-H ₂	2.05(s)	2.03(s)	2.05(s)	2.03(s)	2.03(s)	2.03(s)	2.03(s)	2.03(s)	2.02(s)
, <u>~</u>	1.7(m)	1.09(d,	2.65-2.8(m)	2.63(m)	2.35-2.73(m)	3.65(bs)	2.52(q,	2.83(m)	2.18(s)
		J=2Hz)	1.69(m)	2.44(m)	1.53(bs)	2.55(bs)	J=7Hz	6.57-6.96(m)	(m) 3.0(bs)
		1.32(d,		1.46(bm)			0.98(t,		7.15(bs)
		J=2Hz					J=7Hz		
		1.9(bs)							

a Chemical shifts are recorded in ppm downfield from TMS. The spectra were taken in CDC13 on the Varian EM-390 NMR spectrometer.

 $^{^{\}mbox{\scriptsize b}}$ The chemical shift is part of the multiplate at $\,$ $\, 63.10\text{--}3.50.$

^c The chemical shift was covered by the triplet at \$0.98.

The above results demonstrate that the alumina-catalyzed addition of secondary amines to enone systems is general and compatible with various sensitive functional groups.

A preliminary study of 3-aziridinyl-2,3-dihydrowithaferin A (2) has shown promising activity against murine P-388 lymphocytic leukemia (T/C 149 at 80 mg/kg). 11 The results of tests of compound 2 and other amino adducts against various tumor systems will be reported in due course.

Acknowledgement: This work was supported by Grant CA 29520 (formerly CA 24180) from the National Cancer Institute.

References and Notes

- 1. W. R. Buchell, Adv. Steroid Biochem. and Pharm., 3, 39 (1972).
- 2. G. Gjerstad and A. Modak, Quart. J. of Crude Drug Research, 8, 1141 (1968).
- 3. D. Lavie, E. Glotter, and Y. Shiro, J. Chem. Soc., 7515 (1965).
- S. M. Kupchan, W. K. Anderson, P. Bollinger, R. W. Doskotch, R. M. Smith, J.A.S. Renauld, H. K. Schnoes, A. L. Burlingame, and D. H. Smith, J. Org. Chem., 34, 3858 (1969).
- (a). S. W. Pelletier, N. V. Mody, J. Nowacki, and J. Bhattacharyya, J. Nat. Prod.,
 42, 512 (1979), (b). S. W. Pelletier, G. Gebeyehu, J. Nowacki, and N. V. Mody,
 Heterocycles, 15, 317 (1981).
- S. W. Pelletier, A. P. Venkov, J. Finer-Moore, and N. V. Mody, <u>Tetrahedron Lett.</u>, 21, 809 (1980).
- 7. W. C. Still, M. Kahn, and A. Mitra, J. Org. Chem., 43, 2923 (1978).
- 8. H. E. Gottlieb and I. Kirson, Org. Mag. Reson., 16, 20 (1981).
- 9. K. Campbell, A. H. Sommers, and B. K. Campbell, "Organic Synthesis", John Wiley, New York, 1955, Coll. Vol. 3, p. 148.
- E. Merck neutral alumina (90 active 70-230 mesh) for column chromatography was adjusted to activity III by addition of an appropriate amount of water.
- 11. We thank the National Cancer Institute for the test results.

Received, 5th October, 1981