ON THE SYNTHETIC UTILITY OF THERMALLY GENERATED IMINES: THE RETRO-ENE IMINO DIELS-ALDER REACTION Richard A. Earl and K. Peter C. Vollhardt* Department of Chemistry, University of California, Berkeley, and the Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA <u>Abstract</u> - The flash vacuum pyrolysis of several allyl and propargyl amines provides a preparatively useful synthesis of imines by retro-ene fragmentation. Their synthetic potential is indicated by intramolecular Diels-Alder trapping to give indolizidines in a novel ring-expansion sequence. The imine function is a potentially very useful synthon in heterocycle synthesis, particularly when employed as one of the cycloaddends in the Diels-Alder reaction. It has been known for some time that imines may be generated by the thermolysis of allylic and propargylic amines via retro-ene reaction (Scheme 1), but this method has not seen much preparative use. ## Scheme 1 $$\frac{\Delta}{-CH_2 = C = CH_2} R_2 CH = NR_1 \frac{\Delta}{-CH_2 = CHCH_3} R_2 \frac{\Delta}{H}$$ We report here a facile synthesis of imines using flash vacuum thermolysis (FVP) techniques and some examples of a novel retro-ene-Diels-Alder sequence under these conditions. We initially surveyed the potential of the approach by carrying out a number of model pyrolyses (Table 1) at $650-680^{\circ}$ and 10^{-3} to 10^{-4} torr. TABLE 1. FVP Data on Allylic and Propargylic Amines | Entry | Amine | Products ^a | % Yield b,j | |-------|--|--|---------------------| | 1 | (HC≡CCH ₂) ₂ NH ^C | [HC=CCH=NH]
CH ₂ =C=CH ₂ | 100 | | 2 | (HC≡CCH ₂)NH(CH ₂ CH=CH ₂) ^d | CH ₂ =CHCH=NH
[HC=CCH=NH]
CH ₂ =C=CH ₂ (5 parts)
CH ₃ CH=CH ₂ (1 part) | 100 | | 3 | (CH ₂ =CHCH ₂) ₂ NH ^C | CH ₂ =CHCH=NH
CH ₃ CH=CH ₂ | 100 | | 4 | (CH ₃ CH ₂ CH ₂) ₂ NCH ₂ C≡CH ^e | $\operatorname{CH_3CH_2CH=NCH_2CH_2CH_3}$ $\operatorname{CH_2=C=CH_2}$ | 100 | | 5 | (CH ₃ CH ₂ CH ₂) ₂ NCH ₂ CH=CH ₂ ^f | CH3CH2CH=NCH2CH2CH3
CH3CH=CH2 | 66 | | 6 | c ₆ H ₅ CH ₂ NHCH ₂ C≡CH ^d | [C ₆ H ₅ CH=NH]
CH ₂ =C=CH ₂ | 100 | | 7 | CH ₂ =CHCH ₂ NHC(CH ₃) ₂ C=CH ^g | CH ₂ =CHCH=NH
(CH ₃) ₂ C=C=CH ₂ | 100 | | 8 | CH ₃ CH ₃ N | (5 ports) i N CH ₃ | ori) ₁₀₀ | Footnotes to Table: ^a Products in square brackets were not observed due to rapid decomposition. b Determined by NMR spectroscopy. C Aldrich Chemical Company. d Reference 4. e Reference 5. f Reference 6. g Reference 7. h Prepared from 2-methylpiperidine and propargyl bromide in the presence of potassium carbonate. i Isolated by preparative g.l.c. in 54% yield. j Products were collected in liquid nitrogen traps and worked up directly or by vacuum transfer techniques. Several observations are worthy of note: 1. At the same pyrolysis temperature (675°C) propargylic amines undergo the retro-ene reaction more efficiently than allylic amines (entries 4,5). This is in accord with similar findings in the FVP of the analogous ethers 8 ; 2. The retro-ene reaction appears to be potentially regionselective (entry 8); 3. 2-Propene-1-imine, CH₂=CHCH=NH, a molecule of considerable theoretical interest 9 , can be made by this method 2a in excellent yields (entry 3), clearly superior to two previous preparations. 10 With these initial results in hand, systems were designed capable of generating α, ω -iminodienes, potential intramolecular Diels-Alder substrates (Scheme 2). ## Scheme 2 $$\begin{array}{c|c} & \Delta & \\ & \downarrow \downarrow$$ (stereochemistry uncertain) Starting materials 1-3 were derived from the corresponding imminium salts 11 by treatment with 2-(1,3-butadienyl) magnesium chloride. 12 Surprisingly, FVP of 1 and 2 leads to secondary proton abstraction at C-4, presumably through a diaxial conformer of starting material providing the imminodienes 4 and 5 which could not be induced to undergo cycloaddition. Evidently, the lack of an electron withdrawing substituent on the imine function 1 precluded the intramolecular Diels-Alder reaction. The FVP of 3 was complicated by free radical formation leading to a complex mixture and only small amounts of both possible imines. In order to block retro-ene proton cleavage at C-4 and to simultaneously activate the intermediate imine function for cycloaddition, a series of Y-lactams 6-8 were synthesized by treatment 13 of the corresponding N-alkyl succinimides with 2-(1,3-butadienyl) magnesium chloride followed by reduction of the resulting alcohol with sodium cyanoborohydride. 14 FVP of these substrates required 800°C and quartz chip filled pyrolysis tubes to increase contact time. Under these conditions the indolizidinones $9-11^3$ were obtained, however, only in low yield (<20%). The products were purified by p.g.l.c. or h.p.l.c. and identified by their spectral characteristics and comparison with literature data. ¹⁵ Additional confirmation of the identity of 9 was obtained by the FVP of monodeuterated 6 which led to deuterated 9 as shown. The relative stereochemical assignment of the two isomers of 10 was made by observation of a high field methyl doublet (δ =0.88 ppm) for 10b and a corresponding lower field absorption (δ =1.71 ppm) for 10a. The ration of 10a: 10b was 1:2, diastereoselectivity arising either through control of the stereochemistry of the intermediate imine or the Diels-Alder transition state or both, ¹⁶ although the low yields make any speculation tenuous. Compound 11 is presumed to be a product of rearrangement of the initially formed retro-ene imino Diels-Alder adduct. It was suspected that the reduced basicity of the nitrogen in 6-8 was responsible for the inefficacy of the retro-ene step. 2c,8 This was confirmed by competitive FVP of N,N-di-n-propyl-2-propynylamine and N-n-propyl-N-2-propynylpropionamide at 550°C, when the former is converted to the extent of 100%, whereas the latter is recovered almost unreacted (98%). Thus, the reported approach, the basic feasibility of which is being demonstrated here, suffers from an unusual dichotomy: the structural changes which improve the Diels-Alder cycloaddition occur to the detriment of the retro-ene step and vice versa. Current aims are directed at overcoming these difficulties by catalytic procedures. Acknowledgements. This work was supported by NSF (CHE-79-03954). K.P.C.V. is a Camille and Henry Dreyfus Teacher Scholar (1978-1983). ## REFERENCES AND NOTES - S. M. Weinreb and J. I. Levin, <u>Heterocycles</u>, 1979, 12, 949; M. Lora-Tomayo and R. Madroñero, "1,4-Cycloaddition Reactions," ed. J. Hamer, Academic Press, New York, 1967, p. 127; Y. Arbuzov, <u>Russ. Chem. Rev.</u>, 1964, 33, 407; Y. A. Titov, <u>ibid.</u>, 1962, 31, 267; "The Chemistry of the Carbon-Nitrogen Double Bond," ed. S. Patai, Interscience, New York, 1970; S. R. Sandler and W. Karo, "Organic Functional Group Preparations," Vol. 2, Academic Press, New York, 1971. - (a) K. W. Egger and P. Vitins, <u>Int. J. Chem. Kin.</u>, 1974, 6, 371; (b) K. W. Egger and P. Vitins, <u>Helv. Chim. Acta</u>, 1974, 57, 214; K. W. Egger and P. Vitins, <u>ibid.</u>, 1974, 57, 17; K. W. Egger, <u>J. Chem. Soc.</u>, <u>Perkin Trans. II</u>, 1973, 2007; P. Vitins and K. W. Egger, <u>J. Chem. Soc.</u>, <u>Perkin Trans. II</u>, 1974, 1289; K. W. Egger and P. Vitins, <u>J. Am. Chem. Soc.</u>, 1974, 96, 2714; (c) A. Viola, J. J. Collins, and N. Filipp, <u>Prepr.</u>, <u>Div. Pet. Chem.</u>, <u>Am. Chem. Soc.</u>, 1979, 24, 206. 3. All compounds gave satisfactory analytical and/or spectral data. Selected examples: 1, colorless oil; $\underline{m}/\underline{e}$ (rel intensity) 137 (M^{\dagger} , 2.84), 84 (base peak, 31.07), 42 (9.32); NMR (250 MHz, CDCl₂) δ 1.71 (m, 3H), 2.11 (m, 2H), 2.23 (s, 3H), 2.78 (t, J=8.3Hz, 1H), 3.14 (dt, J=8.2, 2Hz, 1H), 5.06 (bd, J=11Hz, 1H), 5.13 (d, J=2Hz, 1H), 5.20 (d, J=2Hz, 1H), 5.37 (dd, J=17.7, 1.2, 1H), 6.38 (dd, J=17.7,11Hz, 1H); IR (neat) 2967, 2841, 2778, 990, 901 cm. 4, colorless oil; NMR (250 MHz, CDCl₃, assignments by decoupling) δ 1.72 (s, 3H, H_g), 2.35 (m,4H), 3.26 (d, J=1Hz, 3H, H_f), 4.94 (d, J=12Hz, 1H, H_c), 5.11 (d, J=18Hz, 1H, H_d), 5.48 (bt, J= 9Hz, 1H, H_a) 6.35 (dd, J=18, 12Hz, 1H, H_b), 7.65 (m, 1H, H_a); IR (neat) $v_{c=N}$ 1675 cm⁻¹ 7, colorless oil; $\underline{m}/\underline{e}$ (rel intensity) 165.1154 (M⁺, 7.22, calcd. 165.1153), 112 (base peak, 21.2); $^{1}{\rm H}$ NMR (250 MHz, ${\rm C_cD_c}$, assignments by decoupling) δ 0.85 (t, J=7Hz, 3H, H₀), 1.37 (m, 1H, H₁), 1.61 (m, 1H, H_i), 2.02 (m, 1H, H_{h or i}), 2.15 (m, 1H, H_{h or i}), 2.55 (apparent sex, J=7Hz, 1H, H_g), 3.79 (apparent sex, J=7Hz, 1H, H_g), 3.90 (dd, J=8.6, 3.6Hz, 1H, H_f), 4.70 (bs, 1H, H_e), 4.82 (bs, 1H, H_d), 4.88 (d, J=11Hz, 1H, H_c), 4.99 (d, J=18Hz, 1H, H_b), 6.05 (dd, J=18, 11Hz, 1H, H_a); 13 C NMR (CDC1 $_3$) 12.51, 25.33, 29.83, 35.67, 58.72, 115.04, 135.81, 144.94, 175.13; IR (neat) 2980, 2960, 1690, 1465, 1425, 915 cm⁻¹. 9, colorless oil; m/e (rel intensity) 151 (M⁺, 11.55), 136 (base peak, 18.75); NMR (250 MHz, C_6D_6 , assignments by decoupling) δ 1.25 (bs, 3H, H_d), 1.48 (m, 2H, H_b), 1.99 (m, 4H, $H_{a.f}$), 2.34 (ddd, J=12, 12, 5Hz, 1H, H_g axial), 3.36 (bt, J=8Hz, 1H, H_c), 4.38 (dd, J=12, 7Hz, 1H, H_g-equatorial), 5.06 (m, 1H, H_e); IR (neat) $v_{C=0}$ 1695 cm⁻¹. 11, colorless oil; m/e (rel intensity) 199 (M⁺, 7.75), 184 (base peak, 8.60); NMR (250 MHz, CDC1₂) δ 2.00 (q, J=6Hz, 1H, $\rm H_b),$ 2.26 (s, 3H, $\rm H_d),$ 2.41 (t, J=6Hz, 2H, $\rm H_c),$ 3.69 (t, J=5.9Hz, 2H, H_a), 7.43 (dd, J=7, 7Hz, 1H, H_e), 7.55 (dd, J=7, 7Hz, 1H, H_e), 7.85 (AA' m, 2H, H_f). - 4. D. A. Ben Efraim, <u>Tetrahedron</u>, 1973, 29, 4111. - 5. R. F. Parcell and C. B. Pollard, J. Am. Chem. Soc., 1950, 72, 3312. - 6. A. C. Cope and P. H. Towle, J. Am. Chem. Soc., 1949, 71, 3424. - 7. G. F. Hennion and R. S. Hanzel, J. Am. Chem. Soc., 1960, 82, 4908. - A. Viola, R. Proverb, B. L. Yates, and J. Larrahondo, J. Am. Chem. Soc., 1973, 95, 3609; A. Viola, G. F. Dudding, and R. J. Proverb, J. Am. Chem. Soc., 1977, 99, 7390; A. Viola and J. J. Collins, J. Chem. Soc., Chem. Commun., 1980, 1247. - P. A. Kollman, Adv. Org. Chem., 1976, 9, Pt. 1, 1; R. E. Penn, J. Mol. Spec., 1978, 69, 373; J. F. Olsen, 1979, 57, 245; I. Ohmine and K. Morokuma, J. Chem. Phys., 1980, 73, 1907; P. N. Skancke, Acta Chem. Scand., 1980, A34, 219; U. Dinur, B. Honig, and K. Schulten, Chem. Phys. Lett., 1980, 72, 493. - 10. B. Bogdanovich and M. Velić, <u>Angew. Chem.</u>, 1967, 79, 818; <u>Angew. Chem.</u>, <u>Int. Ed. Engl.</u>, 1967, 6, 803; D. R. Boyd, R. Hamilton, N. T. Thompson, and M. E. Stubbs, Tetrahedron Lett., 1979, 3201. - R. T. Dean, H. C. Padgett, and H. Rapoport, <u>J. Am. Chem. Soc.</u>, 1976, 98, 7448; I. G. Csendes, Y. Y. Lee, H. C. Padgett, and H. Rapoport, <u>J. Org. Chem.</u>, 1979, 44, 4173. - S. Nunomoto and Y. Yamashita, <u>J. Org. Chem.</u>, 1979, 44, 4788; K. Kondo, S. Dobashi, and M. Matsumoto, <u>Chem. Lett.</u>, 1976, 1077. - 13. J. Dijkink and W. N. Speckamp, <u>Heterocycles</u>, 1979, 12, 1147; W. Flitsch, <u>Chem. Ber.</u>, 1970, 103, 3205; <u>Justus Liebigs Ann. Chem.</u>, 1965, 684, 141. - 14. J. S. Drage, R. A. Earl, and K. P. C. Vollhardt, submitted for publication; see also: D. J. Hart and Y.-M. Tsai, <u>Tetrahedron Lett.</u>, 1981, 1567; R. T. LaLonde, N. Muhammad, C. F. Wong, and E. R. Sturiale, <u>J. Org. Chem.</u>, 1980, 45, 3664; S. W. Pelletier, N. V. Mody, A. P. Venkov, and H. K. Desai, <u>Tetrahedron Lett.</u>, 1979, 4939; A. Basha, J. Orlando, and S. M. Weinreb, <u>Syn. Commun.</u>, 1977, 7, 549; K. Matoba and T. Yamazaki, Chem. Pharm. <u>Bull.</u>, 1974, 22, 2999. - R. Cahill and T. A. Crabb, Org. Magn. Res., 1973, 5, 295; R. Cahill, T. A. Crabb, and R. F. Newton, Org. Magn. Res., 1971, 3, 263. - S. M. Weinreb, B. Nader, and R. W. Franck, <u>J. Am. Chem. Soc.</u>, 1980, 102, 1153. Received, 30th October, 1981