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Abstract - The filash vacuum pyrolysis of several allyl and
propargyl amines provides a preparatively useful synthesis of
imines by retro-ene fragmentation. Their synthetic potential
is indicated by intramolecular Diels-Alder trapping to give

indolizidines in a novel ring-expansion sequence.

The imine function is a potentially very useful synthen in heterocycle
synthesis, particularly when employed as one of the cyclcaddends in the Diels-

Alder reaction.l

It has been known for some time that imines may be gener-
ated by the thermolysis of allylic and propargylic amines via retro-ene re-

2
action (Scheme 1), but this method has not seen much preparative use.
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We report here a facile synthesis of imines using flash vacuum thermeclysis
(FVP) techniques and some examples of a novel retro-ene-Diels-Alder sequence

under these conditions.
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We initially surveyed the potential of the approach by carrying out
3

a number of model pyrolyses (Table 1) at 850-880° and 10~

to lD-I1l tor‘r‘.3

TABLE 1. FVP Data con Allylic and Propargylic Amines

Entry Amine Products® % Y;i.eldb’:|
1 (HCECCH2)2NHC [HC=CCH=NH] 100
CH,=C=CH,
2 (HCECCHz)NH(CHZCH=CH2)d CH,,=CHCH=NH 100
[HC=CCH=NH]
CH,=C=CH, (5 parts)
CH4CH=CH, (1 part)
3 <CH2=CHCH2)2NH° CH, = CHCH=NH 100
CHS CH= CH2
= [=] -
Y (CH,CH,CH, ), NCH, C=CH CH 4CH, CH=NCH,, CH,, CH_ 100
CH,=C=CH,
_ £ i
5 (CH,CH, CH, ) ,NCE,, CH= CH,, CH,,CH,, CH=NCH,, CH,, Cil 66
CH,CH=CH,
od B
6 CH CH, NHCH, CECH [CgH CH=NH] 100
CH,=C=CH,
- = g = =
7 CH,=CHCH,NHC(CH,) ,C=CH CH,=CHCH=NH 100

(CH3)2C=C=CH2

L e
1
T CHy E;g\ (5 parts) o {l port} 100
3

CHaC = CH CHs

Foctnotes to Table: ° Products in square brackets

were not cbserved due to rapid decompesition.

® petermined by NMR spectroscopy. ¢ Aldrich Chemical
Company. d Reference 4. © Reference 5. f Reference 6.

€ Reference 7. h Prepared from 2-methylpiperidine and
propargyl bromide in the presence of potassium carbonate.
1 Isolated by preparative g.l.c. in 54% yield. 1 Products
were collected in liguid nitrogen traps and worked up

directly or by vacuum transfer techniques.
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Several observations are worthy of ncte: 1. At the same pyrolysis tempera-
ture (675°C) propargylic amines undergo the retro-ene reaction more effic-
iently than allylic amines (entries 4,5). This is in accord with similar
findings in the FVP of the analogous etherss; 2, The retro-ene reaction
appears to be potentially regioselective (entry B8); 3. 2-Propene-l-imine,
CH2=CHCH=NH, a molecule of considerable thecretical interestg, can be made
by this methodza in excellent yields {(entry 3), clearly superior to two
previous preparations.lo

With these initial results in hand, systems were designed capable of

generating a,w=-iminodienes, potential intramolecular Diels-Alder substrates

(Scheme 2).
Scheme 2
A A

Nt

|4\"/ N "

CH,-H CHp

(stereochemistry uncertain}

Starting materials 1-3were derived fromthe corresponding imminium salts 1 by

treatment with 2-(1,3-butadienyl) magnesium chloride.l2 Surprisingly, FVP
of 1 and 2 leads to secondary proton abstraction at C-4, presumably through
a diaxial conformer of starting material providing the iminodienes 4 and 5

which could not be induced to undergc cycloaddition. Evidently, the lack

. . . - L1
of an electren withdrawing substituent on the imine function™ precluded the
intramolecular Diels-Alder reaction. The FVP of 3 was complicated by free

radical formation leading to a complex mixture and only small amounts of

both possible imines.

CHy CHy CeHalHe
2 3
1 -
H, My Hy
N NP CHEN/\/\/\‘A
3,
' Hy Hy CHs
4 2
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In order te block retrec-ene proton cleavage at C-4% and to simultanecus-

ly activate the intermediate imine function for cycloaddition, a series of

13

Y-lactams 6-8 were synthesized3 by treatment of the corresponding N-alkyl

suceinimides with 2-(I1,3-butadienyl) magnesium chloride followed by reduction
of the resulting alecheol with sodium cyanoborohydride.lu FVP of these sub-

strates required 800°C and quartz chip filled pyrolysis tubes to increase

H(D)
A
1“™N ¢l
J

7
0
A
N-CHy —™
2
8

3

contact time. Under these conditions the indolizidinones g-}} were obtained,
however, only in low yield (<20%)., The products were purified by p.g.l.c.

or h.p.l.c. and identified by their spectral characteristics and comparison
with literature data.l5 Additional confirmation of the identity of ¢ was
obtained by the FVP of monodeuterated § which led to deuterated § as shown.
The relative stereochemical assignment of the two isomers of 10 was made by
observation of a high field methyl doublet {6=0.88 ppm) for 10b and a corre-

15

spending lower field absorption (6=1.71 ppm) for 10a. The raticn of 10a:

10b was 1:2, diastereoselectivity arising either through control of the
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stereochemistry of the intermediate imine or the Diels-Alder transition
state or both,16 although the low vields make any speculation tenuous.
Compound 11 is presumed to be a product of rearrangement of the initially
formed retro-ene imino Diels-Alder adduct.

It was suspected that the reduced basicity of the nitrogen in 6-8

2c,8 This was

was responsible for the inefficacy of the retro-ene step.
confirmed by competitive FVP of N,N-di-n-propyl-2-propynylamine and N-n-
propyl-N-2-propynylpropionamide at 550°C, when the former is converted

to the extent of 100%, whereas the latter is recovered almost unreacted
(98%). Thus, the reported approach, the basic feasibility of which is
being demonstrated here, suffers from an unusual dichotomy: the structural
changes which improve the Diels-Alder cycloadditicon occur to the detriment

of the retro-ene step and vice versa. Current aims are directed at over-

coming these difficulties by catalytic procedures.
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