A SIMPLE SYNTHESIS OF (R)-GLYCEROL ACETONIDE FROM ASCORBIC ACID

Seiichi Takano*, Hirotoshi Numata, and Kunio Ogasawara Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

<u>Abstract</u>----A simple synthesis of (R)-glycerol acetonide(5) has been developed using (L)-ascorbic acid(1) as a chiral precursor.

Recent developments in the total synthesis of optically active natural products call for efficient preparation of both (S)- and (R)-enantiomers of glycerol acetonide as versatile chiral precursors¹. Of the enantiomers, the (S)-isomer is readily available, but acquisition of the (R)-counterpart(5) is very difficult because of unavailability of a suitable chiral progenitor². Recently, Jung and Shaw^{1C} have developed an ingenious method for the preparation of the (R)-isomer(5) using (L)ascorbic acid acetonide(2) obtained easily from a readily available chiral precursor, (L)-ascorbic acid(1). However the method involved so tedious manipulations that it can hardly be applicable to a large scale preparation. We report here an improved one-pot procedure for the preparation of (R)-glycerol acetonide(5) from (L)ascorbic acid acetonide(2) which allows a larger scale production employing much simpler experimental conditions. The present procedure consists of the following sequences in the same flask: (i) reduction of the all carbonyl groups contained in the acetonide(2), (ii) oxidative cleavage of all the vicinal glycols of the reduction product(3), (iii) reduction of (S)-glyceraldehyde acetonide(4) formed.

To a stirred suspension of LiAlH_4^3 (2.85 g, 75 mmol) in THF(100 ml) was added freshly prepared (L)-ascorbic acid acetonide(2)^{1C}(13.5 g, 62.5 mmol) in portions under the current of argon at 0°C and the mixture was then refluxed for 2 h until hydrogen evolution ceased. The cooled reaction mixture was treated with minimum amount of saturated aqueous NaCl to decompose remaining LiAlH_4 . To the brown suspension was added saturated aqueous NaIO₄ solution(43.0 g, 200 mmol) dropwise with vigorous stirring at 0°C. After 1 h, a suitable amount of methanol was added to the mixture in order to facilitate stirring and the resulting colorless slurry was treated with NaBH₄(9.5 g, 250 mmol) at 0°C. After being stirred for 1 h at the same temperature, the mixture was filtered by suction through a bed of Celite. The filtrate was evaporated <u>in vacuo</u> and the residue was extracted with ethyl acetate, dried over sodium sulfate, and evaporated <u>in vacuo</u>. The residual oil was distilled using a Kugelrohl to give pure (R)-glycerol acetonide(5)⁴(2.41 g, 29.2 %), bp 110°C(20 mmHg)(lit.⁵ 86-87°C(16 mmHg) for opposite enantiomer), $[\alpha]_D$ -11.17°(c= 5.148, MeOH)(lit.^{1c} $[\alpha]_D$ -10.76°).

REFERENCES AND NOTES

- Recent examples: (a) (+)-Brefeldin A: T. Kitahara, K. Mori, and M. Matsui, <u>Tetrahedron Lett.</u>, 3021(1979), (b) (-)-ipsdienol: K. Mori, T. Takigawa, T. Matsuo, <u>Tetrahedron</u>, <u>35</u>, 933(1979), (c) (-)-GABOB(γ-Amino-β-hydroxybutyric acid): M.E. Jung and T.J. Shaw, <u>J. Am. Chem. Soc.</u>, <u>102</u>, 6304(1980), (d) (-)mesembrine: S. Takano, Y. Imamura, and K. Ogasawara, <u>Tetrahedron Lett.</u>, <u>22</u>, 4479(1981).
- 2. See, ref. lc.
- 3. Increasing amount of LiAlH_4 did not effect the overall yield of (5): 2.0 equimol-26.0 $(\{\alpha\}_D -11.10^\circ(c=4.236, \text{MeOH}))$; 3.0 equimol-29.6 $(\{\alpha\}_D -11.17^\circ(c=5.215, \text{MeOH}))$.
- 4. The compound was identical(IR, ¹H-NMR, MS) with an authentic specimen of the opposite configuration prepared from (D)-mannitol⁵.
- S. Takano, E. Goto, M. Hirama, and K. Ogasawara, <u>Heterocycles</u>, 16, 381(1981).
 Received, 7th October, 1981