REGIOSELECTIVE REDUCTIONS OF VINYLOGOUS IMIDES

Thomas A. Bryson¹ and Ronald B. Gammill

Department of Chemistry

University of South Carolina

Columbia, SC 29208

<u>Abstract</u> - The regiospecific reduction of unsymmetrical vinylogous imides was investigated. Controlled selective reduction was realized via employing neighboring group participation to effect reduction of the less reactive carbonyl group.

Enamido-ketones have been key synthetic intermediates in natural product synthesis 2 . The complete reduction of this functional unit (excess LiAlH $_4$) has been described, however, chemoselective reduction has not been reported. Herein, we describe such regiospecific reductions, one of which proceeds via a novel neighboring group participation reaction. The synthesis of the vinylogous imides used in this study were prepared as outlined in Scheme I. 4

While diborane readily reduces simple amides to amines, 5 we found that treatment of enamido-ketone la with 2.6 equiv. of diborane in tetrahydrofuran at reflux resulted in reduction at C-1, thereby affording enamide 3a (λ , 1650 cm⁻¹; δ 2.40-1.51, 8H's ring C-protons) in 73% yield. 6

$$\begin{array}{c} \underline{a} \quad R,R=0CH_2O,R'=H\\ \underline{b} \quad R,R=H,H,R'=H\\ \underline{c} \quad R,R=0CH_2O,R'=Ac\\ \underline{1} \end{array}$$

The presence of a single OH group (i.e., reduction of the C-1 carbonyl to a methylene group) was readily demonstrated by D_2 0 exchange and acylation (Ac_2 0/ pyridine) of $\underline{3a}$, in the latter case forming monoacetate $\underline{3c}$. This reduction illustrated that the C-1 carbonyl is more reactive than the C-6 position toward electrophic reducing agents and therefore can be selectively reduced $\underline{6}$ or removed.

Treatment of $\underline{1a}$ with Meerwein reagent ($\underline{Et_30}^+BF_4^-$) in $\underline{CH_2Cl_2}$ resulted in the precipitation of a salt ($\underline{4a}$), which when treated with $\underline{NaBH_4}$ in $\underline{CH_3OH}$, afforded the enamino-ketone $\underline{5a}$ (C-6 reduction) in 65% yield. ⁷ The desmethylenedioxy system also underwent this same reaction to afford $\underline{5b}$

(6, 4.37 benzylic methylene; λ , 1600, 1540 cm⁻¹) in 50-60% yield. Even though <u>la</u> and <u>lb</u> gave similar results there was a marked difference in reactivity with respect to treatment with $\operatorname{Et}_30^+\mathsf{BF}_4^-$ in that <u>la</u> afforded a salt in a few (~ 3) hours, while <u>lb</u> required no less than 20 hours for visible salt formation. It seems reasonable to assume that the difference in reactivity of these two systems (<u>la</u> and <u>lb</u>) arises from an electron donating effect of the methylenedioxy group of <u>la</u> (absent in <u>lb</u>) enhancing the nucleophilicity of the C-6 carbonyl group, explaining the observed differences in salt formation and other reactions cited below.

Sodium borohydride reduction of the salt generated from chloride $\underline{6}$ gave, unexpectedly, alcohol 5a (C-6 carbonyl reduction) rather than the envisioned chloride product $\underline{9}$. These results

14 R,R =H,H;R = CH2CH2OMe

led to further preparations and reductions 10 of vinylogous imide tosylate 12 , bromide 13 and methyl ether 14 . Like enamido-ketones 1 and 6 , compounds 12 , 13 and 14 gave a salt upon treatment with 14 14 14 (or 14

The formation of $\underline{5}(a,b)$ is perhaps best depicted as shown in Scheme II and the role of the alkylating agent would be to assist in removal of the β -heteroatom, via alkylation, on the heteroatom of the N-ethyl group thereby allowing for participation fo the C-6 carbonyl in salt formations. 9,11

Scheme II

$$R^+$$
 R^+
 $(-Y)$
 $(-Y)$

This also accounts for alcohol $\underline{5}$ as being the only reduction product from these various substrates. The same salt, $\underline{4}$ (fluorosulfonate counterion), was prepared from the reaction of vinylogous imides $\underline{1}$ and $\underline{6}$ ($\underline{5a}$) or from $\underline{12}$, $\underline{13}$ and $\underline{14}$ ($\underline{4b}$) with methyl fluorosulfonate in CH_2Cl_2 . These salts were air stable, non-hygroscopic solids and on treatment with NaBH₄/CH₃OH afforded the enamino-ketones $\underline{5a}$, \underline{b} . Bromide $\underline{13}$, upon standing overnight at room temperature in $CHCl_3$, also formed small amounts of $\underline{4b}$. This salt could readily be isolated from the $CHCl_3$ solution by filtration and reduced with NaBH₄ to give enamino-ketone $\underline{5b}$.

Acknowledgement: We gratefully acknowledge the National Institutes of Health (GM-28260) and the National Science Foundation (CHE 8014180) for support of this work.

Notes and References

- 1. A. P. Aloan Fellow 1977-1979.
- a) H. Iida, S. Aoyogi, and C. Kibaysahi, J. Chem. Soc., Chem. Comm., 1974, 499; b) I. 2. Ninomiya, T. Naito, and T. Kiguchi, J. Chem. Soc., Perkin I, 1973, 2257.
- 3. For a regioselective reduction of an imide, see J.B.P.A. Wijnberg and W. N. Speckamp, Tetrahedron Letters, 1975, 3963.
- R. Adams, B. R. Baker, and R. B. Wearn, <u>J. Am. Chem. Soc.</u>, 1940, <u>62</u>, 2204; H. M. Fales, E. W. 4. Warnhoff and W. C. Wildman, <u>J. Am. Chem. Soc</u>., 1955, <u>77</u>, 5885; A. Mondon and K. Krohn, Chem. Ber., 1970, 103, 2729.
- 5. H. C. Brown, P. Heim and N. M. Yoon, J. Amer. Chem. Soc., 1970, 92, 1637.
- 6. Hydride reduction of enamido-ketone 3a with diisobutylaluminum hydride also afforded C-1 reduction, affording the C-1 secondary alcohol in 60% yield.
- 7. R. F. Borch, Tetrahedron Lett., 1968, 61; V. G. Granik, B. M. Pyratin, and R. G. Glushkov, Russian Chemical Reviews, 1971, 40, 747.
- 8. The salt formed from 12 and 13 (using methyl fluorosulfonate) was shown to be identical by ir, nmr, UV, C, H analysis and mixed melting point.
- For the participation of the amide group in various reactions see: S. P. McManus, C. U. 9. Pittman, Jr. and P. E. Fanta, J. Org. Chem., 1972, 37, 2353; G. Büchi, D. L. Coffen, K. Kocsis, P. E. Sonnet, and F. E. Ziegler, J. Am. Chem. Soc., 1966, 88, 3099; J. W. Huffman, T. Kamiya and C. B. S. Rao, J. Org. Chem, 1967, 32, 700.
- Treatment of the N-butyl and N-benzyl enamido-ketones $\underline{7}$ and $\underline{8}$ with $\mathrm{Et_3}^{\dagger}$ $\mathrm{BF_4/CH_2Cl_2}$, then 10. $NaBH_A/CH_2OH$ did not effect C-6 carbonyl reduction (i.e. formation of 10 and 11) but afforded high recovery of starting material.
- 11. Interestingly, treatment of $\underline{1a}$ with $PBr_3/CHCl_3$ did not afford the desired bromide but rather gave salt 4a directly.

Received, 18th November, 1981