STUDIES ON HETEROCYCLIC QUATERNARY NITROGEN BASES : KINETICS OF TRANSALKYLATION OF PRIMARY AMINES BY N-SUBSTITUTED 5.6-DIHYDRO-2.4-DIPHENYLNAPHTHO[1.2-b]PYRIDINIUM CATIONS

Sayed Mahmoud M. Elshafie Chemistry Department, Faculty of Sciences, Minia University, Minia , Egypt

<u>Abstract</u>- N-substituents in 5,6-dihydro-2,4-diphenylnaphtho-[1,2-b]pyridiniums are transferred to piperidine by unimolecular and / or bimolecular processes in chlorobenzene solution. The Kinetics of this reaction at variable temperatures were studied. It has been shown that the reaction follows either S_N^1 or S_N^2 mechanisms dependent on the nature of N-substituent.

The displacement of N-alkyl, N-heteroaryl and N-benzyl substituents from 2,4diphenyl-5,6-dihydronaphtho[1,2-b] pyridinium tetrafluoroborate 3 by piperidine as a nucleophile converts primary amines 1 into a wide variety of functionalities 4. These reactions are of considrable synthetic potential and have already led to several novel transformations^{1,2}. Previous studies³ indicated that N-substituents could be transplanted from 2,4,6-triphenylpyridiniums by $S_{\rm N}^{-1}$ or $S_{\rm N}^{-2}$ mechanisms.

To attain such reactions under mild conditions, we studied the effect of C-3 substituents in the pyridinium ring on the kinetic rates for transfer of N-substituents to piperidine. Spectrophotometric method used was for determining the rate constants of the reaction. The kinetic runs were carried out in chlorobenzene at temperature range 40-100°C and samples were quenched by ice cooling, then measuring the

absorbance at 345 nm. N-Alkyl, benzyl and heteroarylpiperidines thus produced were confirmed by synthetic methods⁴. In all cases, the observed rate was a linear function of the piperidine concentration. The rate variations could be interpreted in terms of either S_{w2} reaction or a combination of S_{w1} and S_{w2} mechanisms, values of k1,k2 and activation parameters are given in Table 1. N-Benzyl compounds are displaced essentially completely via the S_N^2 mechanism³. Replacement of the 3-H in compound 5 by a 3-phenyl (6), 3-methyl (7) or 3-ethyl (8) reduces the $S_{\rm N}^2$ rate constants (k_2) by factor of ca. 20, 10 and 9, respectively, because of butterssing effect. Consideration of the previous pattern of compounds demonstrates that S_{N}^{2} rates do not simply increase by introduction of different substituents in C-3 because of the existance of S_{N} l mechanism which lowers the S_N^2 rate for compounds <u>6</u>, <u>7</u>, and <u>8</u>. The reactions of a series of Nsubstituted 2,4-dipheny1-5,6-dihydronaphtho[1,2-b] pyridiniums with piperidine clearly proceed almost entirely by a second order process for methyl, ethyl, allyl and benzyl. but the reaction proceeds by both first order and second order for 2- and 4-pyridyl.

Table 1. First and second order rate constants at 100°C in chlorobenzene solution.

Cpd.	C-sub	stit	uent	ts N-subst	1t- k1.10 ⁵	; k ₂ .]	.0 ³ E _▲	^H 373	8 ₃₇₃
No.	2	3	4	uents	sec ⁻¹	l mol ⁻ sec-l	-1 kcal.mol	⁻¹ kcal.mol	-1 kcal.mol ⁻¹ deg ⁻¹
5	Ph	H	Ph	benzyl	36.66 2	26.34	15.80 <u>+</u> 2.5	15.06 <u>+</u> 2.4	-21.55 <u>+</u> 4.6
6	Ph	Ph	Ph	benzyl	181.77 1	1.22	10.18 <u>+</u> 0.36	9 .43<u>+</u>0.33	-42.61 <u>+</u> 3.7
7	Ph	Me	Ph	benzyl	192 .1 0 2	23.72	16.46 <u>+</u> 0.23	15.71 <u>+</u> 0.26	-24.28 <u>+</u> 1.6
8	Ph	Et	Ph	benzyl	8.11 2	25.04	17.88 <u>+</u> 0.33	17.14 <u>+</u> 0.32	-20.35 <u>+</u> 1.44
9	Ph	Ħ	Ph	Me 4	5.70	2.82	18 . 33±0.25	17.59±0.24	-23.50±1.50
10	Ph	H	Ph	Et 8	• 40	0.52	21.07 <u>+</u> 1.7	20 . 33 <u>+</u> 1.6	-19.50 <u>+</u> 2.6
11	Ph	H	Ph	allyl 14	8.20 3	6.59	14.46 <u>+</u> 0.11	13 .72<u>+</u>0. 1	-28.80 <u>+</u> 1.7
12	Ph	H	Ph	2-pyrid y	1 0.80	•049	2.17 <u>+</u> 0.09	1.43 <u>+</u> 0.0 6	-78.46 <u>+</u> 7.39
13	Ph	Ħ	Ph	4-p y ridyl	1.30 0	• 0 8	8.87 <u>+</u> 0.11	8.13 <u>+</u> 0.10	-59.54 <u>+</u> 3.85

As expected the k2 values increase in the following sequence : 2-pyridyl (4-pyridyl

 $\langle ethyl \langle methyl \langle allyl \langle benzyl. These results show that the S_N² reactions found$ for all substrates is accompanied by unimolecular ionisation for the 2- and 4pyridyl derivatives. We interpret this as evidence for simultaneous S_Nl and S_N²reactions between the corresponding substrates and the amines studied. The S_Nlto S_N² mechanistic changeover has been the subject of considerable controversy:

11- R = Ally1 12- R = 2-Pyridy1 13- R = 4- Pyridy1

it has been proposed that substitutions, quite generally, proceed by initial ionisation⁵ and alternatively that solvolysis generally proceeds with nucleophilic assistance of solvent⁶. Consideration of the compound set (5,9,10,11,12,13) shows that S_N^2 rates for <u>11</u> and <u>12</u> decrease by factor of 6 and 4582 than that for 5, respectively, due to steric effect. The obtained results indicates that the transalkylation by 5,6-dihydro-2,4-diphenylnaphtho[1,2-b] pyridinium cations proceeds much faster than reactions utilizing the 1-benzyl-2,4,6-triphenylpyridinium cations³ as transalkylating agent. This may be attributed to the presence of the naphthyl maiety in the present compounds which assist release of the N-substituent by both steric and inductive effects.

Acknowledgement- The author is deeply indepted to prof.Dr.M.H.Blnagdi at Cairo University for reading the manuscript in its original form. REFERENCES -

1. A.R.Katritzky, Tetrahedron , 1980, 36, 679.

2. S.M.M.Elshafie, Indian J. Chem., 1981, 20B, 427.

3. A.R.Katritzky, G.Musumarra, K.Sakizadeh, S.M.M.Elshafie and B.Jovanovic, <u>Tetrahedron Letters</u>, 1980, 21, 2697.

4. S.M.M.Blebafie, <u>A'in Shams University Science Bulletin</u>, 1981, in press. 5. R.A.Seen, <u>Accounts Chem. Research</u>, 1973, <u>6</u>, 46; cf. D.J.Mc-Lennan, <u>ibid</u>., 1976, 9, 281.

6. T.W.Bentley and P.Von R.Schleyer, Ad. Phys. Org. Chem., 1977, 14, 15.

Received, 7th September, 1981

,

*