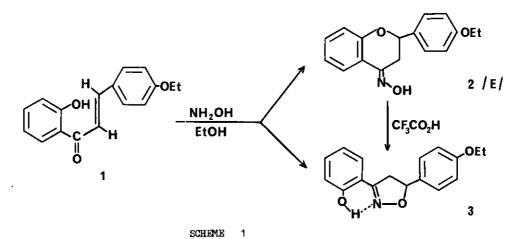
2,3-DIHYDRO-BENZO-Y-PYRONE OXIMES. PART VII*

A SIMPLE METHOD OF DIFFERENTIATION OF ISOMERIC DERIVATIVES OF

 \triangle^2 -ISOXAZOLINE AND FIAVANONE OXIMES. A CORRECTION OF SOME STRUCTURES Zbignlew Witozak


Department of Organic Chemistry, Institute of Fundamental Chemical Sciences, Faculty of Pharmacy, School of Medicine

90-145 Lodz, Narutowicza 120a, Poland

<u>Abstract</u> - The simple method of differentiation of isomeric derivatives i.e. (E)-2,3-dihydro-2-(4-ethoxyphenyl)-4H-benzopyran-4-one oxime (2) and corresponding Δ^2 -isoxazoline (3) on the basis of their UV and ¹H NMR data, allows us to establish that the 2,3-dihydro-4H-benzopyran-4-one derivatives (4a-4d) in the reaction with hydroxylamine give oximes (5a-5d) instead of isomeric Δ^2 -isoxazolines as previously described ¹². The isomeric Δ^2 -isoxazoline derivatives (6b-6d) were obtained by trifluoroacetic acid-catalyzed rearrangement of obtained oximes (5b-5d).

As a part of continuing work on the synthesis of flavonoid heterocycles¹⁻³ and in conjunction with our interest in their biological properties⁴ we initiated an extended study of the reaction of hydroxylamine with 4-substituted 2'-hydroxychalcones.⁵ In our previous communication⁶⁻⁷ we have shown that this reaction affords the products of 1,2-addition and simultaneous 1,4 and 1,2-addition as well as cyclization into flavanone system and next oximation. In the case of 2'-hydroxy-4-ethoxychalcone⁸ (1) in a slightly acid medium (NH₂OH-HCl in ethanol) and at substrate ratio 1:1 two compounds are formed; compound (2) m.p. 182-184°C as a major product and compound (3)m.p.82-84°C as a co-product.On the basis of spectroscopic analyses (UV, IR, ¹H NMR) compound (2) was identified as 4'-ethoxyflavanone oxime ¹ whereas compound (3) as 3-(2-hydroxyphenyl)-5-(4-ethoxyphenyl)- Δ^2 -isoxazoline.⁹ Oxime (2) undergoes TFA catalyzed rearrangement to isomeric Δ^2 -isoxazoline (3).⁹ The initial differentiation of isomeric oxime (2) and Δ^2 -isoxazoline (3) may be based on the test with the alcoholic solution of ferrio chloride (positive for Δ^2 -isoxazolines).

"Previous Parts entitled "CHALCONE OXIMES", Part VI. Heterocycles, 14, 1319 (1980).

The ¹H NMR spestra of both isomeric compounds (2) and (3) (typical AEX system) are very similar to Δ^2 -isomazolines¹⁰ as well as flavanones oximes^{1,11}. The coupling constants (particularly diagnostic J_{AX}) were different and (2) has the appropriate values J_{AB} = 17 Hz, J_{BX} = 13 Hz and J_{AX} = 3.2 Hz¹, whereas (3) has the values J_{AB} = 17 Hz, J_{EX} = 13 Hz and J_{AX} = 8 Hz⁹, which correspond closely to values reported for Δ^2 -isomazolines respectively ¹⁰. The comparison of the value of J_{AX} for (2) and (3) permits their easy differentiation. The second method of simple differentiation between Δ^2 -isomazolines and flavanones oximes is comparison of their UV spectra. The UV spectra of (2)¹ and (3)⁹ are shown in Fig.1 and the UV spectrum of (3) is quite distinct with its characteristic second peak.

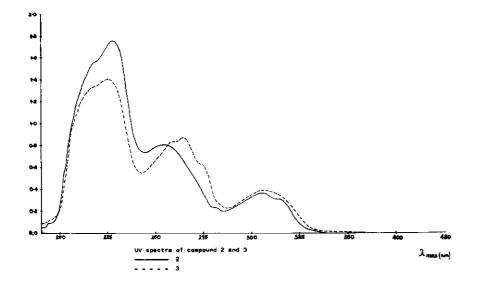
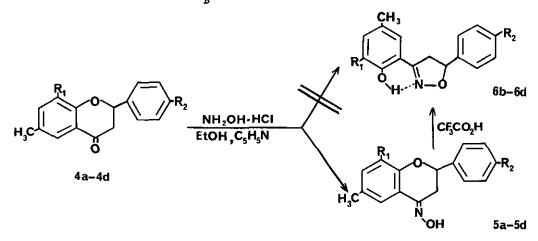
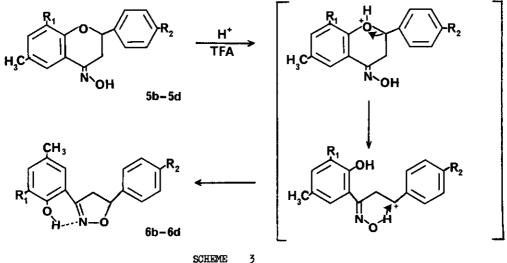



Fig. 1

The above obtained results prompted us to study the literature data concerned with the synthesis of Δ^2 -isorazolines and isomeric flavanones oxines from 2'-hydroxychalcones. In 1970 Borkhade and Marathey ¹² reported the formation of Δ^2 -isomazolines (without any confirmation of structures) on condensing of mixture of flavanones and corresponding 2'-hydroxychalcones with hydroxylamine. The fact that compound of the type of Δ^2 -isoxazolines have the melting point that is almost always low ¹³ encouraged us to conduct a systematic reexamination of the structures of reported products ¹². Taking into consideration that reported compounds ¹² may posses the structures of isomeric flavanones oximes, for the sake of comparison we have attempted to synthesize these oximes from the corresponding flavanones (4a-4d). Generally, physico-chemical data (m,p,) of obtained compounds (5a-5d) and their acetyl derivatives $(5a_1-5d_1)$ are in agreement with the Δ^2 -isomazolines structures and their acetyl derivatives quoted by Borkhade and Marathey 12. UV and ¹H NMR data comparison with the model oxime (2) demonstrates the similarity of all compounds (5a-5d) obtained. Each compound exhibits three bands within the ranges of 218-221,253-264, and 312-316 nm in UV. This UV evidence fully suports the structures of obtained compounds ¹² as oximes of flavanones. The oximes (5a-5d) exist in the (E) form as proved on the basis of their ¹H NMR (Table 2) by analogy with our earlier reports 1,9 of characteristic downfield shift of -H_B proton in similar oximes possesing (B) configurations.



SCHEME

According to our recent investigations ⁹ we have also attempted to synthesize compounds of a Δ^2 -isomazoline structure by TFA catalyzed rearrangement of appropriate oximes of flavanones. Thus when (E) oximes (5b-5d) were treated with boiling trifluoroacetic acid (for 1.5-3 h) the corresponding Δ^2 -isomazoline derivatives (6b-6d) were obtained. The oxime (5a) similar to the oximes with 4'-Cl, 4'-Er, 4'-I, 4'-CH₃ and 4'-NO₂ substituents ⁹ was not rearranged under

2

above-mentioned reaction conditions. These observations suggested that the T-pyrone ring opening process may be due to a -M effect of the phenyl group as a substituent. The oximes (5a,-5d,) were not rearranged under above-mentioned reaction conditions.

SCHEME

The first step of the course of this rearrangement will be the initial protonation at oxygen atom and after that the opening of the Υ -pyrone ring. The intermediate oxime thus would further cyclise under above-mentioned reaction conditions with the formation of the five membered ring of Δ^2 -isoxazoline. This course of the above reaction not only additionally confirms the structures of parent compounds as oximes, but also shows that authors 12 obtained oximes instead of these isomeric Δ^2 -isoxazolines. In the light of these results, the present work describes the first synthesis of Δ^2 -isoxazoline derivatives (6b-6d). The tentative assignments of the UV and ¹H NMR spectra of (6b-6d) are given in Table 1 and 2. The comparison of the UV data of (6b-6d) with the model Δ^2 -isoxazoline (3) in contrast to model oxime (2) demonstrates the similarity of obtained compounds (6b-6d) and determines the simple method of differentiation of Δ^2 -isomazolines from isomeric flavanone oximes hitherto not observed in the literature. Moreover in the ¹H NMR spectra of compounds (6b-6d) and earlier series of Δ^2 -isomazolines⁹, the signal characteristic of obelated phenolic group -OH appeared at 9.6-9.8 ppm, while for oximes (5a-5d) at 10.36-10.44 ppm. The above results easy permit to distinguish Δ^2 -isorazoline from the isomeric flavamone oximes. EXPERIMENTAL SECTION

The purity of the products was determined by TLC Kieselgel 60F254 benzene-ethyl acetate 38:12 (v:v). Melting points (uncorected) were determined on a Boetius apparatus (Carl Zeiss Jena). UV spectra were recorded on a UNICAM SP-800 spectrometer in an ethanol solution.

--- 554 ---

Tapre I.	Tab	le	1.
----------	-----	----	----

Properties and IR, UV, data of compounds (5a-5d) and (6b-6d)

Compound	^R 1	R ₂	Yield (%)	М.р. (°С)	Rf	Formila	IR bands $\binom{KBr}{max}$ (cm ⁻¹)	UV 入 EtOH (nm) (log E)
Sa	-H	-H	88	187-188 ^ª	0.78	^C 16 ^H 15 ^{NO} 2	3230 (OH),2900 (-CH ₂ -), 1600 (C=N),1220 (-C-O-C), 1135,1070 (=N-O)	218, 255, 312, 318 (4.28),(4.00),(3.66),(3.61)
5b	-Br	-н	92	196-197	0.77	с ₁₆ н ₁₄ втно ₂	3240 (OH),2900 (-CH ₂ -) 1600 (C=N),1250 (-C-O-C), 1090 (=N-O)	221, 264, 316, 326 (4.39),(3.95),(3.69),(3.62)
5c	-H	-осн ₃	85	210-212 ^b	0.75	^C 17 ^H 17 ^{NO} 3	3240 (OH),2920 (-CH ₂ -), 1605 (C=N),1235 (-C-O-C) 1140,1120 (=N-O)	227, 256, 313, 323 (4.38),(3.99),(3.63),(3.56)
5d	-Br	-осн ₃	90	187-189	0.79	C ₁₇ H ₁₆ BrNO ₃	3240 (OH),2910,2810, (-CH ₂ -),1600 (C=N),1235, (-C-O-C),1135,1070 (=N-O)	221, 253, 313, 323 (4.50),(3.82),(3.65),(3.57)
6b	-Br	-H	80	98-100	0.81	C16 ^H 14 ^{BrN0} 2	3230 (OH),2900 (-CH ₂ -), 1600 (C=N),1155,1065,(=N-O	221, 260, 265, 320) (4.42),(3.95),(3.98),(3.66
бс	-H	-осн ₃	72	80-82	0.83	с ₁₇ н ₁₇ ю ₃	3125 (OH),2920 (-CH ₂ -), 1600 (C=N),1185,1070,(=N-O	223, 266, 265, 320) (4.30),(4.06),(3.92),(3.68)
6d	-Br	-0CH3	93	71-73	0.84	C _{17^H16^{BrN0}3}	3160 (OH), 2940 (-CH ₂ -) 1615,(C=N), 1175,1035,(=N-4	223, 266, 276, 318 D) (4.41),(4.15),(4.02),(3.7

.

.

Compounds	¹ н NAR 5 in ppm	Acety]	deriva:	tives
		Compound	m,p.°C	IR KBr (cm ⁻¹)
5a**	2.33(s, 3H, -CH ₃), 2.73(dd, 1H, -H _A), 3.4(dd, 1H, -H _B), J_{AB} =17Hz, 5.0(q, 1H, -H _X), J_{BX} =12Hz, J_{AX} =3Hz, 7.5-7.63(dd, 1H, -C ₅), 6.73-7.63(m, 8H, aromatic), 10.36(s, 1H, -OH)	^{5a} 1	184-185	1755 (-COCR ₃) 1615 (-C=N-)
5b*	2.33(s,3H,-CH ₃),2.72(dd,1H,-H _A),3.46(dd,1H,-H _B), J_{AB} =17Hz,5.1(q,1H,H _X), J_{BX} =13Hz, J_{AX} =3.2Hz,7.46-7.53(dd,1H,-C ₅),7.20-7.53(m,7H,aromatic), 10.44(s,1H,-OH)	^{5b} 1	158-160	1750 (-COCH ₃) 1615 (-C=N-)
5c**	2.33(s,3H,-CH ₃),2.7(dd,1H,-H _A),3.4(dd,1H,-H _B), J_{AB} =17Hz,5.03(q,1H-H _X), J_{BX} =12.8Hz, J_{AX} =3Hz,3.8(s,3H,-OCH ₃),7.63-7.7(dd,1H,-C ₅),6.9-7.7(m,7H, aromatic),10.36(s,1H,-OH)	^{5c} 1	187-189	1755 (-COCR ₃) 1610 (-C=N-)
5d**	2.3(s, 3H, -CH ₃), 2.7(dd, 1H, -H _A), 3.26(dd, 1H, -H _B), J_{AB} =17Hz, 4.9(q, 1H, -H _X), J_{BX} =12Hz, J_{AX} =3Hz, 3.83(s, 3H, -OCH ₃), 7.46-7.6(dd, 1H, -C ₅), 6.7-7.6(m, 7H, aromatic), 10.26(s, 1H, -OH)	- 5d ₁	184-186	1755 (-COCH ₃) 1610 (-C=N~)
6b**	2.33(s,3H,-CH ₃),3.16(dd,1H,-H _A),3.46(dd,1H,-H _B),J _{AB} =17Hz,5.3(t,1H,-H _X), J _{RX} =12Hz, J _{AX} =8.2Hz,7.2-7,56(m,7H,aromatic),9.8(s,1H,-OH)	6b ₁	152-154	1750 (-COCH ₃) 1605 (-C=N-)
6c*	2.3(s, 3H, -CH ₃), 3.16(dd, 1H, -H _A), 3.63(dd, 1H, -H _B), $J_{AB} \approx 17Hz$, 5.36(t, 1H, -H _X), $J_{BX} \approx 12Hz$, $J_{AX} \approx 9Hz$, 3.8(s, 3H, -OCH ₃), 6.7-7.26(m, 7H, aromatic), 9.66(s, 1H, -OH)	6c ₁	83-85	1755 (-COCH ₃) 1610 (-C=N-)
6d*	2.3(s,3H,-CH ₃),3.2(dd,1H,-H _A),3.66(dd,1H,-H _B),J _{AB} =17Hz,5.36(t,1H,-H _X), J _{BX} =12Hz, J _{AX} =9Hz,3.8(s,3H,-OCH ₃),6.73-7.3(m,6H,aromatic),9.66(s,1H,-OH)	6d ₁	79-80	1750 (-COCH ₃) 1610 (-C=N-)

.

Table 2 $^{1}\mathrm{H}$ NMR data of compounds (5a-5d) and (6b-6d) and properties of their acetyl derivatives

*Solvent CDCl₃ **Solvent CD₃COCD₃

1

IR spectra were made by means of UNICAM SP-200G spectrometer. ¹H NMR were recorded on a VARIAN EM-360 (60 MHz) in $CDCl_3$ and CD_2OOCd_3 , using TMS as an internal standard. The flavanones used as starting materials were prepared by known procedures ^{12,14}.

2,3-Dihydro-2-(4-ethoxyphenyl)-4H-benzopyran-4-one oxime (2) and 3-(2-hydroxyphenyl)-5-(4-ethoxyphenyl)- Δ^2 -isoxazoline (3)

A solution of 2.68g (0.01 mole) of chalcone (1) in ethanol (75 ml) and 2.0g (0.028 mole) of hydroxylamine hydrochloride was heated under reflux for 8 h. The resulting solution was cooled. The precipitate (1.55g) was collected by filtration and purified by crystallization from ethanol followed by column chromatography on silica gel using benzene-ethyl acetate 38:12 v:v as eluant to yield (2) (1.35g 45%), R_{f} = 0.62. The above filtrate was left standing at room temperature for 4 h. The precipitate of (3) (0.77g) was filtered and purified by crystallization from ethanol followed by column chromatography on silica gel in ether-hexane 6:4 v:v to give (3) (0.5g 20%), R_{f} = 0.76, m.p.82-84^oC.

2,3-Dihydro-2-(4-R_-phenyl)-4H-6-methyl-8-R_-benzopyran-4-one oximes (5a-5d)

A solution of 1.0g of appropriate flavanone in ethanol (40 ml) and anhydrous pyridine (2.5 ml) together with 1.0g (0.014 mole) of hydroxylamine hydrochloride was heated under reflux for 2 h. After cooling, the reaction mixture was poured into ice-water and the precipitate was collected by filtration, washed with cold water and crystallized from ethanol.

2,3-Dihydro-2-(4 -R_-phenyl)-4H-6-methyl-8-R_-benzopyran-4-one oxime acetates (5a1-5d1)

A mixture of 0.5g of appropriate oxime (5a-5d) and acetic anhydride (10 ml) was left standing for 12 h at room temperature. The resulting solution was poured into ice-water. The products was collected and crystallized from ethanol. Yields 85-90%.

3-(2-Hydroxy-5-methyl -8-R₁-phenyl)-5-(4-R₂-phenyl)- Δ^2 -isoxazolines (6b-6d)

A solution of 0.5g of appropriate oxime (5b-5d in trifluoroacetic acid (TFA) (5 ml) was heated under reflux for 1.5 to 3 h. After cooling, the reaction mixture was poured into ice-water. The resulting precipitate was collected by filtration, washed with dilute sodium hydroxide solution and water, and crystallized from ethanol.

$\underline{3-(2-\underline{Acetoxy-5-\underline{methyl-8-R_1-phenyl})-5-(4-\underline{R_2-phenyl})-\Delta^2-\underline{isoxazolines}(\underline{6b_1-6d_4})}$

A mixture of 0.5g of Δ^2 -isoxazolines, acetic anhydride (5 ml) and anhydrous sodium acetate was heated under reflux for 3 h. After cooling, the reaction mixture was poured into ice-water. The separated precipitate was purified by crystallization from ethanol. Yields 88-92%.

REFERENCES

- 1. Z. Witczak and M. Królikowska, Polish J. Chem., 1979, 53, 1033.
- 2. Z. Witczak and M. Królikowska, Acta Poloniae Pharm., 1980, 37, 599.
- 3. Z. Witczak and M.Krolikowska, Polish J. Chem., 1981, 55, in press.
- 4. M. Krelikowska, W. Perka, A. Szadowska and I. Wejman, Acta Poloniae Pharm., 1979, 36, 667.
- 5. Z. Witczak and M. Krolikowska, Polish J. Chem., 1981, 55, 89.
- 6. M. Krelikowska and Z. Witczak, Roczniki Chem., 1976, 50, 1205.
- 7. M. Krolikowska and Z. Witczak, <u>Boczniki Chem.</u>, 1977, <u>51</u>, 611.
- 8. F. Herstein and S. Kostanecki, Ber., 1899, 32, 318.
- 9. Z. Witczak, <u>Heterocycles</u>, 1980, 14, 1319.
- 10. R. Sustman, R. Huisgen, and H. Huber, Ber., 1967, 100, 1802.
- 11. N. Sarda, A. Groulier, H. Pacheco and A. Cier, Bull. Soc. Chim. France, 1972, 3183.
- 12. K. T. Borkhade and M. G. Marathey, Indian J. Chem., 1970, 8, 796.
- A. Quilico, in Weisberger A. "Five and Six-Membered Compounds with Nitrogen and Oxygen" Vol. 17, J.Wiley, New York-London, 1962, p. 103.
- 14. C. T. Chang, F. C. Chen, T. S. Chen, K. K. Hsu, T. Ueng and M. Hung, <u>J. Chem. Soc.</u>, 1961, 3414.
- 15. A. E. A. Sammour, J.Chem. U.A.R., 1969, 12, 1.
- 16. T. C. Sharma and V. Saksena, Indian J. Chem., 1977, 15B, 748.

Received, 30th November, 1981